摘要
首次构造了一个具有最低维数(3维)的二次非线性系统,证明了其具有轨道双翻转的异维环,并运用Silnikov坐标和活动标架法分析了该异维环在3次扰动下的分支情况.本文给出的构造异维环的方法为构造其他类型的具有或不具有轨道翻转的同宿、异宿和异维环提供了很好的借鉴.
A concrete nonlinear system with degree two and the least dimension (=3) was firstly given, and it was shown that the system has a heterodimensional cycle with double orbit flips. Then, by using Silnikov coordinates and moving frame, the bifurcation of the cycle was studied under the perturbation of degree three. The method given here provides a useful reference for constructing homoclinic, heteroclinic and heterodimensional cycles with various other kinds of degeneracy.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第5期73-83,共11页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(10671069)
关键词
异维环
活动坐标
异宿轨道
周期轨道
分支
heterodimensional cycle
moving frame
heteroclinic orbit
periodicorbit
bifurcations