期刊文献+

一种综合用户和项目因素的协同过滤推荐算法 被引量:20

Collaborative filtering recommendation algorithm based on both user and item
下载PDF
导出
摘要 针对用户评分数据极端稀疏情况下传统协同过滤推荐算法的不足,提出了一种综合用户和项目因素的最近邻协同过滤推荐(HCFR)算法.该算法首先以一种改进的相似性度量方法(ISIM)为基础,根据当前评分数据的稀疏情况,动态调节相似度的计算值,真实地反映彼此之间的相似性.然后,在产生推荐时综合考虑用户和项目的影响因素,分别计算目标用户和目标项目的最近邻集合.最后,根据评分数据的稀疏情况,自适应地调节目标用户和目标项目的最近邻对最终推荐结果的影响权重,并给出推荐结果.实验结果表明,与传统的只基于用户或基于项目的推荐算法相比,HCFR算法在用户评分数据极端稀疏情况下仍能显著地提高推荐系统的推荐质量. To solve the shortcomings of the traditional collaborative filtering recommendation algorithms in the situation of extreme sparsity of user's rating data,a hybrid collaborative filtering recommendation(HCFR) algorithm for the nearest neighbors based on users and items is proposed.First,on the basis of correlation similarity,this algorithm adopts an improved similarity measure method(ISIM) which can dynamically adjust the value of similarity according to the current state of sparse rating data and truly reflect the real situation.Then,in the process of generating recommendation results,both user factors and item factors are considered and the nearest neighbor sets of the active user and the active item are obtained.Finally,according to the sparsity of the user's rating data,different self-adaptive influence weights of the neighbor sets of the active user and the active item are adjusted,and the final recommendation results are obtained.The experimental results show that compared with the traditional recommendation algorithms which are only based on user or item,the HCFR algorithm can effectively improve the recommendation quality even in the situation of extreme sparsity of user's rating data.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期917-921,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60973023)
关键词 协同过滤推荐 数据稀疏 相似性 评分预测 collaborative filtering recommendation data sparsity similarity rating prediction
  • 相关文献

参考文献14

  • 1Deshpande M,Karypis G.Item-based top-N recommendation algorithms[J].ACM Trans Information System,2004,22(1):143-177.
  • 2Sarwar B M,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International World Wide Web Conference.Hong Kong,China,2001:285-295.
  • 3Sun Xiaohua,Kong Fansheng,Ye Song.A comparison of several algorithms for collaborative filtering in startup stage[C]//Proceedings of the 2005 IEEE International Conference on Networking,Sensing and Controlling.Los Alamitos,CA,USA,2005:25-28.
  • 4Sarwar B M,Karypis G.Application of dimensionality reduction in recommender systems:a case study[C]//Proceedings of ACM Web KDD Workshop on Web Mining for E-commerce.New York,USA,2000:114-121.
  • 5Gong Songjie,Ye Hongwu.Joining user clustering and item based collaborative filtering in personalized recommendation services[C]//Proceedings of the 2009 International Conference on Industrial and Information Systems.Haikou,China,2009:149-151.
  • 6Braak Paul,Abdullah Noraswaliza,Xu Yue.Improving the performance of collaborative filtering recommender systems through user profile clustering[C]//Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.Milan,Italy,2009:147-150.
  • 7Xue G R,Lin C,Yang Q,et al.Scalable collaborative filtering using cluster-based smoothing[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Salvador,Brazil,2005:114-121.
  • 8Wang J,de Vries A P,Reinders M J.Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Washington DC,USA,2006:501-508.
  • 9邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 10李聪,梁昌勇,马丽.基于领域最近邻的协同过滤推荐算法[J].计算机研究与发展,2008,45(9):1532-1538. 被引量:93

二级参考文献33

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 5Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 6Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 7Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 8Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 9Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 10Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.

共引文献666

同被引文献202

引证文献20

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部