摘要
The biharmonicity of the product map Φ2=φ×ψ and the two generalized projections φ-and ψ-are analyzed. Some results are obtained, that is, Φ2 is a proper biharmonic map if and only if b is a non-constant solution of -1/f2 Jφ(dφ(grad(lnb)))+n/2 grad|dφ(grad(lnb))|2=0 and f is a non-constant solution of -1/b2Jψ(dψ(grad(lnf)))+m/2grad|dψ(grad(lnf))|2=0, and Φ2=φ×ψ is a proper biharmonic map if and only if φ-and ψ-are proper biharmonic maps.
讨论了积映射Φ2=φ×ψ和2个广义的投影φ和ψ的2-调和性,得到了几个主要结论:Φ2=φ×ψ是恰当2-调和映射的充分必要条件是函数b,f分别为方程-1/f2 Jφ(dφ(grad(lnb)))+n/2grad dφ(grad(lnb))2=0,-1/b2Jψ(dψ(grad(lnf)))+m/2grad dψ(lnf)=0的非常值解;Φ2=φ×ψ是恰当2-调和映射的充分必要条件是φ和ψ都是恰当2-调和映射.
基金
The National Natural Science Foundation of China(No.10971029)