期刊文献+

反向凝固过程中铸带厚度及晶粒度的预测

Prediction of the Casting Strip Thickness and Organized Grain during Inverse Solidification Process
下载PDF
导出
摘要 基于人工神经网络建立了反向凝固过程中的性能预测模型,实现了对铸带厚度和新相层晶粒度的全面预测;探讨了凝固过程中的主要工艺参数对上述性能的综合影响,为反向凝固性能的综合预测提供了简便的新手段.研究表明,新生相晶粒度随钢水过热度、母带厚度、浸入时间变化对其影响不显著,而钢水过热度、母带厚度、浸入时间变化对铸带厚度的影响较大.该模型的预测结果与实测的结果较为接近. The artificial natural net can used to predict the property of the strip formed in the molten steel during inverse casting. The property including in casting thickness and new organized grain are comprehensively forecasted. The influences on the property are discussed by the main operated factors during inverse solidification. The new method to predict the property is provided. The new organized grain little changes with molten steel superheat, mother sheet thickness and dip time,but the cast sheet thickness greatly changes with these main operated factors. .The predicted result of the model corresponds to the experienced result.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 1999年第2期139-141,共3页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金!59634130
关键词 反向凝固 晶粒度 神经网络 预测 铸带厚度 inversion casting,strip thickness,grain,natural net
  • 相关文献

参考文献2

二级参考文献1

  • 1许中波,庆祝林宗彩教授八十寿辰论文集,1996年,84页

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部