期刊文献+

线性正则变换域的带限信号采样理论研究 被引量:5

Sampling Theories of Bandlimited Signals in Linear Canonical Transform Domain
下载PDF
导出
摘要 线性正则变换是傅里叶变换、分数阶傅里叶变换的更广义形式,是一种潜在而重要的信号变换工具,但是与之相应的采样理论目前还不十分完备,所以有必要在线性正则变换域重新研究采样定理.本文从线性正则变换的定义和性质出发,首先得到时域均匀采样信号的线性正则变换;然后在此基础上导出了线性正则变换域带限信号的采样定理和重构公式;最后以chirp信号为例仿真说明了采样定理的应用.文中得出的结论是对经典采样理论的推广,将进一步丰富线性正则变换的理论体系. The linear canonical transform(LCT) is a generalization of the Fourier transform and the fractional Fourier transform(FRFT).It is a potential but powerful tool for signal transformation.The sampling theories related to LCT have not been completed yet,so the sampling theorem needs to be restudied in the LCT domain.We first briefly introduce the LCT and its properties,then obtain the LCT of the uniform sampled signals in time domain and based on it,we deduce sampling theorem and reconstruction formula for bandlimited signals with LCT.Finally,an example of sampling a chirp signal is provided to demonstrate the application of the sampling theorem.Our work is a generalization of the classical sampling theories and will enrich the theoretical system of the linear canonical transform.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第9期1984-1989,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60603009 No.60672029)
关键词 线性正则变换 带限信号 采样理论 信号重构 linear canonical transform bandlimited signal sampling theorem signal reconstruction
  • 相关文献

参考文献12

  • 1M Moshinsky,C Quesne.Linear canonical transformations and their unitary representations[J].J Math Phys,1971,12(8):1772-1783.
  • 2Adrian Stem.Why is the linear canonical transform so littleknown?[A].AIP Conference Proceedings Volume 860[C].New York:American Institute of Physics,2006.225-234.
  • 3张卫强,陶然.分数阶傅里叶变换域上带通信号的采样定理[J].电子学报,2005,33(7):1196-1199. 被引量:30
  • 4Soo-Chang Pei,Jian-Jiun Ding.Relations between fractional opera-tions and time-frequency distributions,and their applications[J].IEEE Trans Signal Processing,2001,49(8):1638-1655.
  • 5Kamalesh Kumar Sharma,Shiv D J.Signal separation using linear canonical and fractional Fourier transforms[J].Opt Communications,2006,265(2):454-460.
  • 6DENG Bing,TAO Ran,WANG Yue.Convolution theorems for the linear canonical transform and their applications[J].Science in China(Series F),2006,49(5):592-603. 被引量:22
  • 7A Koc,H M Ozaktas,C Candan,M A Kutay.Digital computation of linear canonical transforms[J].IEEE Trans Signal Processing,2008,56(6):2383-2394.
  • 8Adrian Stem.Sampling of linear canonical transformed signals[J].Signal Processing,2006,86(7):1421-1425.
  • 9Bing-Zhao Li,Ran Tao,Yue Wang.New sampling formulae related to linear canonical transform[J].Signal Processing,2007,87(5):983-990.
  • 10Hui Zhao,Qi-Wen Ran,Jing Ma,Li-Ying Tan.On bandlimited signals associated with linear canonical transform[J].IEEE Signal Processing Letters,2009,16(5):343-345.

二级参考文献19

  • 1TAO Ran,DENG Bing,WANG Yue.Research progress of the fractional Fourier transform in signal processing[J].Science in China(Series F),2006,49(1):1-25. 被引量:100
  • 2Namias V. The fractional order Fourier and its application to quantum mechanics[J]. J Inst Appl Math, 1980,25(3):241- 265.
  • 3McBride A C, Kerr F H. On Namias' s fractional Fourier transforms [J]. IMA J Appl Math, 1987,39(2): 159- 175.
  • 4Almeida L B. The fractional Fourier transform and time-frequency representations[J] .IEEE Trans Signal Processing, 1994,42(11) :3084 -3091.
  • 5Ozaktas H M,Zalevsky Z,Kutay M A.The Fractional Fourier Transform with Applications in Optics and Signal Processing[M]. New York: John Wiley & Sons,2001.
  • 6Mendlovic D, Ozaktas H M. Fractional fourier transform in optic[J].Proc SPIE, 1999,3749:40 - 41.
  • 7Ozaktas H M,Barshan B,et al. Convolution,filtering, and mulitiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms[J]. J. Opt. Soc. Amer A, 1994,11 (2): 547 - 559.
  • 8Martone M. A multicarrier system based on the fractional Fourier transform for time- frequency- selective channels[J]. IEEE Trans Commun,2001,49(6): 1101 - 1020.
  • 9Xia X G. On bandlimited signals with fractional Fourier transform[J].IEEE Signal Processing Lett, 1996,3(3) :72- 74.
  • 10Zayed A I. On the relationship between the Fourier and fractional Fourier transforms[J]. IEEE Signal Processing Lett, 1996,3 (12): 310-311.

共引文献49

同被引文献48

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部