期刊文献+

磁浮系统车轨耦合振动分析 被引量:16

Maglev Vehicle and Guideway Coupling Vibration Analysis
下载PDF
导出
摘要 针对车轨耦合磁浮系统中的振动现象,利用双环PID算法控制,研究其产生的根源.首先,建立了车轨耦合磁浮系统动力学模型,并把该非线性模型在平衡点线性化;其次,由于控制参数变化,线性化系统特征多项式会出现各种零实部根,分别得到了系统出现零实部根的条件;最后,利用中心流形对各种振动情况进行了分岔方程的推导以及仿真分析,并讨论了出现混沌现象的可能.研究结果表明,磁浮车轨耦合系统会出现同宿分岔、Hopf分岔、二次Hopf分岔和混沌,这是磁浮系统振动的根源. Under classic double loop PID control,the vibrations of maglev vehicle and guideway coupling system are researched.First,the coupling maglev mathematic model is set up and linearized at the equilibrium point.Second,due to the varies of the control parameters,the roots of the characteristic polynomial of the linear system will have zero real part,the sufficient terms of this condition are got.Finally,the bifurcation equations are deduced,the vibrations are simulated,and the probability of chaos emergence by way of period doubling bifurcation are also discussed.Research results show that the bifurcations will arise such as homoclinic,Hopf and period doubling bifurcations.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第9期2071-2075,共5页 Acta Electronica Sinica
关键词 磁浮系统 振动 中心流形 分岔 混沌 maglev system vibration central manifold bifurcation chaos
  • 相关文献

参考文献8

二级参考文献26

  • 1刘三红.一类三阶时滞微分方程的稳定性及Hopf分支[J].咸宁学院学报,2003,23(3):26-28. 被引量:1
  • 2翟婉明,赵春发.磁浮车辆/轨道系统动力学(Ⅰ)——磁/轨相互作用及稳定性[J].机械工程学报,2005,41(7):1-10. 被引量:74
  • 3施晓红,佘龙华.非线性磁悬浮控制系统的周期运动稳定性研究[J].动力学与控制学报,2005,3(3):52-55. 被引量:9
  • 4[1]Guckenheimer J, Holmes P. Nonlinear oscillations, dy-namical systems and bifurcations of vector fields[M]. New York: Springer Press, 1983.
  • 5[2]Wiggins S. Global bifurcations and chaos, analytical meth-ods [M]. New York: Springer Press, 1988.
  • 6[3]Chua L O, Komuro M, Matsumoto T. The double scroll family[J]. IEEE Tran On Circ Syst, 1986, 33: 1072-1118 .
  • 7[4]Ichiju S, et al. Magnetic bearing-rotor system model[J]. JSME International Journal, Series 2, 1990, 33(1): 18-26.
  • 8[5]Markus A, Ladislav K, el at. Performance of a magnetically suspended flywheel energy storage device[J]. IEEE Trans On Contr Sys Tech, 1996, 4(5):494-501.
  • 9[6]Yao H, Xu J X. The research on dynamical behavior and design about control parameters for nonlinear magnetic control system[J]. Chinese Journal of Aeronautics,1999,12(1):25-29.
  • 10[7]Piccardi C. Bifurcation analysis via harmonic balance in periodic systems with feedback structure[J]. Int J Control, 1995, 62(6): 1507-1515.

共引文献72

同被引文献136

引证文献16

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部