期刊文献+

噪声环境下遗传算法的性能评价 被引量:5

Performance Evaluation of Genetic Algorithm in Noisy Environments
下载PDF
导出
摘要 为了评价遗传算法在噪声环境下的优化性能,提出"平均最优解"和"最优解分布标准差"两个指标,实验结果表明新指标可以有效地评价噪声环境下遗传算法的优化性能.研究了实数编码遗传算法在噪声强度递增环境下的性能.结果表明小生境策略和多种群策略可以改善遗传算法在噪声环境下的性能,单点交叉在噪声环境下的性能要优于混合交叉. "The average of best" and "the standard deviation of best" were proposed to evaluate the performance of genetic algorithms in noisy environment.Results show the evaluation indexes could effectively evaluate the performance of genetic algorithm in the environment.Based on this,the performances of real-coded genetic algorithms with different crossover operator in noisy environment have been investigated.Results show the performance of deterministic crowding genetic algorithm and multi population genetic algorithm in the environment are better than that of elist genetic algorithm;the behaviors of alone point crossover outperform that of blended crossover.
作者 黎明 李军华
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第9期2090-2094,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60963002) 江西省自然科学基金(No.2009GZS0090) 航空基金(No.2009ZD56003) 江西省教育厅科技项目(No.GJJ09483)
关键词 遗传算法 噪声环境 性能评价 genetic algorithm noisy environment performance evaluation
  • 相关文献

参考文献15

  • 1H G Beyer.Evolutionary algorithms in noisy environments:theoretical issues ane guidelines for practice[J].Comput Methods in Mech Appl Eng,2000,186(2-4):239-267.
  • 2Y Jin,J Branke.Evolutionary optimization in uncertain environments-A survey[J].IEFE Trans Evol Comput,2005,9(3):303-317.
  • 3周兰凤,洪炳熔.用基于知识的遗传算法实现移动机器人路径规划[J].电子学报,2006,34(5):911-914. 被引量:27
  • 4林琳,王树勋.基于自适应小生境混合遗传算法的说话人识别[J].电子学报,2007,35(1):8-12. 被引量:9
  • 5D V Arnold,H G Beyer.A comparison of evolution strategies with other direct search methods in the presence of noise[J].Comput Optim Applicat,2003,24:135-159.
  • 6袁颖,林皋,周爱红,闫东明.基于改进遗传算法的桥梁结构损伤识别应用研究[J].应用力学学报,2007,24(2):186-190. 被引量:9
  • 7H Greiner.Robust optical coating design with evolution strategies[J].Appl Opt,1996,35(28):5477-5483.
  • 8P Stagge.Averaging efficiently in the presence of noise[A].A E Eihen,Parallel Problem Solving from Nature ser LNCS[C].Berlin,Germany:Springer-Verlag,1998.188-197.
  • 9A Di Pietro,L While,et al.Applying evolutionary algorithms to problems with noisy,time-consuming fitness functions[A].Proceedings of the IEEE Congress on Evolutionary Computation[C].Portland,USA:IEEE,2004.1254-1261.
  • 10J Branke.Creating rotust solutions by means of evolutionary algorithms[A].A E Eiben,Parallel Problem Solving from Nature ser.LNCS[C].Berlin,Germany:Springer-Verlag,1998.119-128.

二级参考文献38

  • 1黄聪明,陈湘秀.小生境遗传算法的改进[J].北京理工大学学报,2004,24(8):675-678. 被引量:49
  • 2郭观七,喻寿益.小生态进化技术综述[J].计算机工程与设计,2005,26(4):857-861. 被引量:5
  • 3周明 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2000..
  • 4Hu Y,Yang S X,et al.A knowledge based genetic algorithm for path planning of a mobile robot[A].Proc of the 2004 IEEE Intl.Conference on Robotics & Automation[C].New Orieans,2004.4350-4355.
  • 5Tu J,Yang S X.Genetic algorithm based path planning for a mobile robot[A].Proc of IEEE Intl Conf on Robotics andAutomation[C].Taipei,Taiwan,September 2003.14-19.
  • 6Lozano-Pérez T.Spatial planning:a configuration approach[J].IEEE Trans on Computer,1983,32 (2):108-120.
  • 7Sharir M.Algorithmic motion planning in robotics[J].Computer,1989,22(3):9-20.
  • 8Khosla P,Volpe R.Superquadric artificial potentials for obstacle avoidance and approach[A].Proc IEEE Intl Conf on Robotics and Automation[C].Philadelphia,PA,1988.1778-1784.
  • 9Deng X,Mirzaian A.Competitive robot mapping with homogeneous markers[J].IEEE Trans on Robotics and Automation,1996,12(4):532-542.
  • 10Rimon E,Koditschek D E.Exact robot navigation using artificial potential fields[J].IEEE Trans on Robotics and Automation,1992,8(5):501-518.

共引文献44

同被引文献39

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部