期刊文献+

基于神经网络的自适应PID控制器在矿井输送机中的应用 被引量:1

Application of Self-tuning PID Controller Based on Neural Network in Mine Conveyor
下载PDF
导出
摘要 矿井输送机运行过程中被控对象具有时变、非线性等特性,传统自整定PID控制器难以满足控制要求。采用基于BP算法的神经网络对PID控制参数进行优化,引入FPGA来实现PID控制器的硬件设计,采用DSP Builder 7.0构建闭环测试系统,并基于ModelSim SE 6.2版本进行调试,完成了功能仿真,且对波形进行了比较及分析,证实了FPGA实现自整定PID控制器在矿井输送机中得到了很好的效果。 In mine conveyor operation process, the controlled object has characteristics of time-varying and nonlinear. Traditional self-tuning PID controller can not meet these control requirements. Using neural network based on BP algorithm can optimize the PID controller parameters commendably, and FPGA is introduced to implement the hardware design of PID controller. A close-loop test system is constructed by DSP Builder 7.0, and then debug based on ModelSim SE 6.2, and completed functional simulation. Last, the wave shape is compared and analyzed, and it confirms that the self-tuning PID controller based on FPGA has a good effect in mine conveyor.
出处 《煤矿机械》 北大核心 2010年第11期199-201,共3页 Coal Mine Machinery
关键词 FPGA PID BP神经网络 DSP BUILDER MODELSIM SE FPGA PID BP neural network DSP Builder ModelSim SE
  • 相关文献

参考文献4

二级参考文献22

共引文献59

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部