期刊文献+

一种准确提取设备系统仪表指示的方法 被引量:1

A Method of Indicator Extraction Exactly to the Equipment Meter
下载PDF
导出
摘要 某些远程网络监控系统,以指针仪表或数字仪表为主要监控对象,监控图像的主要特点是仅仪表指针或数码显示存在显著变化,背景变化很少。利用该特点,采用卡尔曼滤波更新背景、高阶统计分析处理含噪差值图像两者相结合的方法来提取准确的指针位置或数码显示,并给出目标区域的坐标。这样可在编码端只压缩并传输提取目标,到远程解码端再与背景合成得到实时图像,以减少传输量提高监控实时性,同时为实现监控的智能化做准备。仿真结果表明,该方法可获得较准确的指针位置及数码显示。 In some remote monitoring system, pointer or digital instruments are the main objects. In this kind of monitoring system, the pointer or number changes a lot, while the background changes a little. The method of combining Kalman Filter used to update background with high order statistics used to process noise difference is adopted to get the position of the pointer or the value of the number. And then the coordinate of the target area is presented. So moving ob- ject images on site are compressed and transfered, then inserted to the background for later intelligent recognizing and processing. This mode can not only improve the real time capability by reducing the amount of the transmission data but also lay a solid foundation for monitoring intellectualization. The simulation result indicates that this method can extract the pointer position and digital value precisely and effectively.
作者 季建平 程健
出处 《仪表技术》 2010年第10期42-45,共4页 Instrumentation Technology
关键词 背景更新 卡尔曼滤波 前景获取 高阶统计分析 background updating Kalman filter foreground extraction high order statistics
  • 相关文献

参考文献5

二级参考文献16

  • 1刘永信,魏平,侯朝桢.视频图像中运动目标检测的快速方法[J].仪器仪表学报,2002,23(z3):163-166. 被引量:21
  • 2Dorin Comaniciu,V Ramesh and Peter Merr.kemel-Based Object Tracking. Learning Patterns of Activity Using Real-Time Traeking.IEEE Tramsaetions on Patern Analysis and Machine Intelligene,May 2003,25(5):564-577.
  • 3Cedras C, Shah M. Motion-Based Recognition: a Survey. Image and Vision Computing, 1995, 13(2):129-155
  • 4Barcelo L, Binefa X. Bayesian Video Mosaicing with Moving Objects. International Journal of Pattern Recognition and Artificial Intelligence, 2002, 16(3):341-348
  • 5Miura K I, Nagano T. A Computational Model for the Detection of Object Motion by Moving Observer Using Self-Motion Signals. Information Science, 2000, 123(1-2):55-73
  • 6Mch R, Wollborn M. A Noise Robust Method for 2D Shape Estimation of Moving Objects in Video Sequences Considering a Moving Camera. Signal Processing, 1998, 66(2): 203-217
  • 7Kim M, et al. Moving Object Segmentation in Video Sequences by User Interaction and Automatic Object Tracking. Image and Vision Computing, 2001, 19(5) : 245-260
  • 8Kesrarat W, Sortrakul T. An Object Location Specifying Methodology Using One Camera. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2001, 9(6): 685-702
  • 9Yamaguchi K. A Method for Identifying Specific Vehicles Using Template Matching. In: Proc of the IEEE/IEEJ/JSAI lnternational Conference on Intelligent Transportation Systems. Tokyo, Japan, 1999, 8-13
  • 10Alshebeili S A. Cumulant-Based Identification Approaches for Non-Minimum Phase FIR System. IEEE Trans on Singnal Processing, 1993, 41(4): 1576-1588

共引文献43

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部