期刊文献+

改进粒子群算法在三维水下导航规划中的应用 被引量:4

The Application of an Improved PSO to the Submersible Path-Planning
下载PDF
导出
摘要 基于群智能理论提出了一种改进粒子群算法.以非线性策略改变惯性权值,增强粒子群算法局部和全局寻优的调度能力,以改变迭代公式加大"优秀"粒子的影响,增强粒子群体的寻优能力.通过理论推导、验证和实验仿真,证明了改进粒子群算法具有更优的性能.在此基础上,将该算法应用到水下潜器的三维路径规划中,通过对三维空间的分割降维,并进行条件约束,实现了将路径规划问题转化为路径点求解的优化问题.实验仿真获得了从起点到终点的无碰撞路径,验证了该方法的可行性. Based on the theory of swarm intelligence, an improved particle swarm optimization (IPSO) is put forward. The IPSO can enhance scheduling ability for local and global optimal of PSO by using nonlinear strategy to change the inertial weights. It can also strengthen optimization ability of particles by changing the position iterative formula to increase effects of "excellent" particle. Through theoretical derivation, validation and experimental simulation, it is shown that the IPSO owns more excellent performance. The proposed IPSO is used in three dimensional path planning of underwater vehicle. By reducing the dimension of three-dimensional space and via segmentation adding constraint condition, the path planning problem is converted into the optimization problem about solutions of path points. Finally, through the experimental simulation, a path from start to finish point without collision is given, so the feasibility of this method is proved.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2010年第9期1059-1064,共6页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(60704001)
关键词 潜器 导航 粒子群优化算法 三维水下建模 submarine navigation particle swarm optimization(PSO) underwater three-dimensional modeling
  • 相关文献

参考文献6

二级参考文献37

共引文献533

同被引文献41

  • 1申浩,田峰敏,赵玉新.基于VoronoiCells插值的三维海底地形图生成方法[J].系统仿真学报,2006,18(z2):444-446. 被引量:5
  • 2梁俊,王琪,刘坤良,卢全慧.基于随机中点位移法的三维地形模拟[J].计算机仿真,2005,22(1):213-215. 被引量:30
  • 3葛哲学,杨拥民,胡政,陈仲生.非高斯噪声下基于Unscented粒子滤波器的非线性系统故障诊断方法[J].兵工学报,2007,28(3):332-335. 被引量:6
  • 4SUN Jun, XU Wenbo, FENG Bin. A global search strategy of quantum-behaved particle swarm optimization [ C ]//Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems. Singapore, 2004 : 111-116.
  • 5SUN Jun, FANG Wei, WU Xiaojun, et al. Quantum-behaved particle swarm optimization : analysis of the individual particle's behavior and parameter selection [ J ]. Evolutionary Computation, 2012, 20(3): 349-393.
  • 6CHAI Zhilei, SUN Jun, CAI Rui, et al. Implementing quantum-behaved particle swarm optimization algorithm in FPGA for embedded real-time applications [ C ]//Proceed- ings of the 2009 Fourth International Computer Sciences and Convergence Information Technology. Washington, DC, USA: IEEE Computer Society, 2009: 886-890.
  • 7VAN DEN BERGH F, ENGELBRECHT A P. A new locally convergent panicle swarm optimizer[ C ]//IEEE International Conference on Systems, Man and Cybernetics. Hammamet, Tunisia, 2002, 3: 94-99.
  • 8WARREN C W. A technique for autonomous underwater vehicle route planning[ J ]. IEEE Journal of Oceanic Engineering, 1990, 15(3): 199-204.
  • 9VASUDEVAN C, GANESAN I,. Case-based path planning for autonomous underwater vehicles [ J ]. Autonomous Robots, 1996, 3(2): 79-89.
  • 10Chander A,Chatterjee A,Siarry P.A new social and mo- mentum component adaptive PSO algorithm for image seg- mentation[J].Expert Systems with Applications, 2011,38: 4998-5004.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部