期刊文献+

半定规划的改进的外梯度法 被引量:1

Improved extra-gradient method for semi-definite programming
下载PDF
导出
摘要 利用半定规划的最优性条件,对其进行有效变换,把求解半定规划问题转化为求解变分不等式问题,再给出一个改进的求解变分不等式问题的外梯度法,从而得到半定规划问题的最优解.结果表明:改进的算法是求解半定规划的有效方法. Semi-definite programming is an extension of linear programming.In this paper,semi-definite programming is effectively transformed into a variational inequality problem.An improved extra-gradient method is proposed,and then semi-definite programming is solved.The result shows that the improved method is effective for semi-definite programming.
作者 李蕊
出处 《重庆文理学院学报(自然科学版)》 2010年第5期17-20,共4页 Journal of Chongqing University of Arts and Sciences
关键词 半定规划 变分不等式 外梯度法 semi-definite programming variational inequality extra-gradient method
  • 相关文献

参考文献8

  • 1Alizadeh F. Interior point methods in semidefinite programming with applications to combinatorial optimization [J]. SIAM J. Optim,1995(5):13-S1.
  • 2Helmberg C. Semidefinite pmgranuning for combinatorial optimization [ M ]. Berlin : Konrad - Zuse - Zentrum for Informations Technik,2000 : 13 - 25.
  • 3Todd M J. Semidefinite optimization [ J ]. Acta.Numerica, 2001 (10) :515 -560.
  • 4杨国平,刘三阳.半定规划问题的一种新的预测-校正算法[J].应用数学,2005(S1):5-9. 被引量:2
  • 5Noor M. A. Extragradient methods for pseudomonotone variational inequalities [ J ]. Journal of Optimization Theory and Applications, 2003, 117 (3) :475 - 488.
  • 6He B S, Liao L Z. Improvements of some projection methods for monotone nonlinear variational inequalities [J]. Optim Theory Appl, 2002,112(1) :111 -128.
  • 7He B S, Yuan X M, Zhang J Z. Comparison of two kinds of prediction - correction methods for monotone variational inequalities[ J ]. Computational Optimization and Applications, 2004 (27) :247 - 267.
  • 8Wang X. Improved steplength by more practical information in the extragradient method for monotone variational inequalities [ EB/OL ]. http ://www. springerlink. conr/content/al wq5276r3443281 / 24 December 2008.

二级参考文献2

  • 1B. S. He,L. Z. Liao. Improvements of Some Projection Methods for Monotone Nonlinear Variational Inequalities[J] 2002,Journal of Optimization Theory and Applications(1):111~128
  • 2Patrick T. Harker,Jong-Shi Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J] 1990,Mathematical Programming(1-3):161~220

共引文献1

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部