摘要
利用具有BP算法的前馈神经网络(MFNN),针对反应器建立了过程数据与故障类型之间的对应关系,辨识出系统的正常运行状态与故障运行状态。为了提高辨识的准确度,利用小波技术改进MFNN的作用函数构成了小波神经网络(WNN)。对化学反应器中的一类典型反应过程进行了仿真实验,实验结果表明,WNN的故障辨识比MFNN的故障类型辨识具有更高的准确率。
Using the multilayer forward neural networks(MFNN)based on back propagation(BP)algorithm,the relationship between the process measurements and fault type was constructed,the identification of the normal state and fault state was achieved.For improving the accuracy of identification,wavelet technology was used,the activation function of MFNN was modified and wavelet neural network(WNN)was constructed.The simulation results of a classical reaction process of chemical reactor show that WNN has higher accuracy than MFNN for fault identification.
出处
《辽宁石油化工大学学报》
CAS
2010年第3期79-81,89,共4页
Journal of Liaoning Petrochemical University
关键词
故障
辨识
小波神经网络
Fault
Identification
Wavelet neural network