期刊文献+

Schiff碱基过渡金属镍络合物的电化学聚合:阳极电聚合中扫描速率的影响(英文) 被引量:2

Electropolymerization of Nickel Complexes with Schiff Bases:Effect of Sweep Rate on Anodic Polymerization
下载PDF
导出
摘要 采用线性电位扫描法制备了水杨醛-Schiff碱基过渡金属镍络合物的聚合物poly[Ni(salen)],扫描速率为5-150 mV.s-1.采用场发射显微镜观察了聚合物poly[Ni(salen)]的表面形貌.研究了电聚合中扫描速率对聚合物生长的影响,电聚合速率(dГ/dm)与扫描速率(v)呈指数衰退关系,通过库仑电量分析指出电聚合扫描速率在20mV.s-1时聚合产物中含有最多的氧化还原活性点.扫描速率提高时单体的扩散步骤限制了聚合物的生长,所以氧化还原活性点总量随着扫描速率的提高而开始下降.利用循环伏安法分析了聚合物poly[Ni(salen)]的扩散动力学,结果表明在20 mV.s-1时制备的聚合物具有较大的电荷扩散系数. Anodic electrochemical polymerization of N,N′-ethylenbis(salicylideneaminato) nickel(II)([Ni(salen)]) in tetrabutylammonium perchlorate(TBAP)/acetonitrile(AN) was investigated by the linear sweep potential method.The sweep rate ranged from 5 to 150 mV.s-1.The effect of sweep rate on the growth of poly[Ni(salen)] was studied by Coulomb analysis.The morphologies of poly[Ni(salen)] were characterized by field emission scanning electron microscopy(FESEM).The relationship between the growth rate of poly[Ni(salen)](dГ/dm) and the sweep rate(v) fits the exponential degradation equation.The content of the redox center for poly[Ni(salen)],grown at sweep rate of 20 mV.s-1,reaches a maximum and then decreases as the sweep rate increases because monomer diffusion restricts the growth of poly[Ni(salen)].We studied the effect of polymerization sweep rate on the kinetics of the as-grown poly[Ni(salen)] by cyclic voltammetry.The charge diffusion coefficient(D) of poly[Ni(salen)] grown at a sweep rate of 20 mV.s-1 was found to be the highest.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2010年第10期2647-2652,共6页 Acta Physico-Chimica Sinica
基金 supported by the Natural Science Foundation of Beijing,China(2093039) Program for New Century Excellent Talents in University,China~~
关键词 电化学聚合 希夫碱 过渡金属络合物 掺杂度 电荷扩散系数 Electropolymerization Schiff base Transition metal complex Doping level Charge diffusion coefficient
  • 相关文献

参考文献23

  • 1Dahm,C.E.;Peters,D.G.Anal.Chem.,1994,66:3117.
  • 2Abdirisak,A.I.;Armando,G.;Elio,V.Electrochimica Acta,1997,42:2065.
  • 3Giulio,B.;Alessandra,C.;Alesandro,S.;Giorgio,S.Green Chem.,2009,11:1517.
  • 4Samiran,B.;Kwang,E.J.;Song,Y.J.;Wha,S.A.New J.Chem.,2010,34:156.
  • 5Zhou,X.;Sheare,J.;Rokita.S.E.J.Am.Chem.Soc.,2000,122:9046.
  • 6Khairul,I.A.;James,D.G..;Getachew,A.W.;Sahba,K.;Subhrangsu,S.M.Org.Biomol.Chem.,2009,7:926.
  • 7Henderson,M.J.;Hillman,A.R.;Vieil,E.J.Phys.Chem.B,1999,103:8899.
  • 8Martins,M.;Freire,C.;Hillman,A.R.Chem.Commun.,2003,(3):434.
  • 9Tedim,J.;Carneiro,A.;Bessada,R.;Patricio,S.;Magalhaes,A.L.;Freire,C.;Gurman,S.J.;Hillman,A.R.J.Electroanal.Chem.,2007,610:46.
  • 10Dahm,C.E.;Peters,D.G.J.Electroanal.Chem.,1996,406:119.

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部