期刊文献+

NaCl对琼脂糖凝胶电泳法分离单壁碳纳米管的影响 被引量:1

Effects of NaCl on the Separation of Single-Walled Carbon Nanotubes by Agarose Gel Electrophoresis
下载PDF
导出
摘要 如何获得单一导电属性的单壁碳纳米管(SWCNT),使其在各领域得到更广泛的应用,引起了科研人员越来越多的关注.琼脂糖凝胶电泳(AGE)法以其简便,低成本,可规模化等优点在分离金属型(m-)和半导体型(s-)单壁碳纳米管的诸多分离方法中体现出独特的优势.本文利用紫外-可见-近红外(UV-Vis-NIR)吸收光谱分析手段,系统研究了NaCl的添加对AGE法分离SWCNT的影响.研究发现NaCl的添加对SWCNT的分离有一定的影响:当NaCl添加量低于70 mmol.L-1时,可以提高分离后体系中s-SWCNT的相对含量;当NaCl添加量高于70mmol.L-1时,随着添加量的增加,NaCl的加入开始抑制m-SWCNT和s-SWCNT的有效分离;当NaCl添加量达到160 mmol.L-1时体系分离效率明显降低.我们推测这种影响主要是由盐的添加改变了分散剂在m-SWCNT和s-SWCNT表面的吸附结构引起的. Plenty of attention has been paid to obtaining single-walled carbon nanotubes(SWCNT) with single conductive properties so that they can be applied in various fields.Among the separation techniques used for metallic(m-) and semiconducting(s-) single-walled carbon nanotubes,agarose gel electrophoresis(AGE) is thought to be a relatively simple and low-cost method.In this work,we used UV-visible-near infrared(UV-Vis-NIR) absorption spectroscopy to study the effect of NaCl on the separation of SWCNT by AGE.Our results show that the addition of NaCl greatly influences the separation of the SWCNT.At a NaCl concentration of less than 70 mmol.L-1,the relative content of s-SWCNT increased after separation and at a NaCl concentration of higher than 70 mmol.L-1,the separation of m-SWCNT and s-SWCNT was restrained as the concentration of NaCl increased.At a NaCl concentration of 160 mmol.L-1,the separating efficiency of the system dropped markedly.We suggest that the addition of NaCl may change the adsorption properties of the surfactant towards m-SWCNT and s-SWCNT.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2010年第10期2757-2762,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20903069)资助项目~~
关键词 单壁碳纳米管 琼脂糖凝胶电泳 紫外-可见-近红外吸收光谱 分离 NACL Single-walled carbon nanotubes Agarose gel electrophoresis UV-visible-near infrared absorption spectrum Separation NaCl
  • 相关文献

参考文献27

  • 1Iijima,S.;Ichihashi,T.Nature,1993,363:603.
  • 2Bethune,D.S.;Kiang,C.H.;de Vries,M.S.;Gorman,G.;Savoy,R.;Vazquez,J.;Beyers,R.Nature,1993,363:605.
  • 3Collins,P.G.;Zettl,A.;Bande,H.;Thess,A.;Smalley,R.E.Science,1997,278:100.
  • 4Gao,J.;Itkis,M.E.;Yu,A.;Bekyarova,E.;Zhao,B.;Haddon,R.C.J.Am.Chem.Soc.,2005,127:3847.
  • 5Chen,P.;Wu,X.;Lin,J.;Tan,K.L.Science,1999,285:91.
  • 6Kong,J.;Franklin,N.R.;Zhou,C.W.;Chapline,M.G.;Peng,S.;Cho,K.;Dai,H.J.Science,2000,287:622.
  • 7Li,J.;Liu,Q.Analytical Biochemistry,2005,346:107.
  • 8Ren,Z.F.;Huang,Z.P.;Xu,J.W.;Wang,J.H.Science,1998,282:1105.
  • 9Ralph,K.;Frank,H.;Hilbert,V.L.Science,2003,301:344.
  • 10Green,A.A.;Hersam,M.C.Nano.Lett.,2008,8:1417.

同被引文献20

  • 1Wu Z C, Chen Z H, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F, Rinzler A G. Science, 2004, 305(5688) : 1273-1277.
  • 2孙斌杰,王亚男,邵娜,胡听芳,欧阳津.分析化学,2009,37:D027.
  • 3齐玉冰,刘瑛,宋启军.分析化学,IOll,39(7):1053-1057.
  • 4Yao Z, Kane C L, Dekker C. Phys. Rev. Lett. , 2000, 84(13) : 2941-2944.
  • 5Wind S J, Appenzeller J, Martel R, Derycke V, Avouris P. Appl. Phys. Lett. , 2002, 80(20) : 3817-3819.
  • 6Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegel M P, Provencio P N. Science, 1998, 282(5391): 1105-1107.
  • 7Krupke R, Hennrich F, L6ehneysen H V, Kappes M M. Science, 2003, 301(5631) :344-347.
  • 8Green A A, Hersam M C. Nano Lett. , 2008, 8(5) : 1417-1422.
  • 9Huang H J, Maruyama R, Noda K, Kajiura H, Kadono K. J. Phys. Chem. B, 2006, 110(14): 7316-7320.
  • 10Zheng M, Jagota A, Strano M S, Santos A P, Barone P, Chou S G, Diner B A, Dresselhaus M S, Mclean R S, C~nc~n G R. Snmsonidze G G. Semke. E D. Usrev M, Walls D J. Science, 2003, 302(5650) : 1545-1548.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部