期刊文献+

基于Cross-EKF定位的多机器人协作围捕策略研究 被引量:5

Multi-robots cooperative hunting strategy based on Cross-EKF localization
原文传递
导出
摘要 针对目前多机器人协作围捕过程中收敛速度慢、稳定性差、定位精度低的问题,提出一种新的围捕策略.设计出Cross-EKF定位算法,对目标位置的后验估计协方差进行交叉计算,以取得最小协方差区域.以区域边缘点到均值中心最大距离为半径,构建收敛圆,将对动态点的收敛扩展为对动态面的收敛.实验结果表明,系统能快速平稳地收敛该圆,从而实现对目标的精确围捕,该方法具有较高的实用价值. A new multi-robots cooperative hunting strategy based on Cross-EKF localization is proposed for enhancing convergence rate, robustness and precision. In this strategy, the posterior estimate covariance for target location estimated by multi-robots is crossly calculated, and a minimum covariance is obtained. The maximum distance from edge points to mean center is used as radius to construct a convergence circle. The convergence to dynamic point is expanded to circle surface. The experimental results show that the circle is quickly and smoothly converged and the target is accurately hunted. The method possesses high practical value.
出处 《控制与决策》 EI CSCD 北大核心 2010年第9期1313-1317,1323,共6页 Control and Decision
基金 国家自然科学基金重点项目(90820306)
关键词 多机器人 Cross-EKF定位 协作围捕 Multi-robots Cross-EKF localization Cooperative hunting
  • 相关文献

参考文献14

  • 1Stefan Markov, Stefano Carpin. A cooperative distributed approach to target motion control in multirobot observation of multiple targets[C]. Proc of IEEE/RSJ Int Conf on Intelligent Robots and Systems. San Diego: IEEE Press, 2007:931-936.
  • 2Yamaguchi. A cooperative hunting behavior by mobilerobot troops[J]. Int J of Robotics Research, 1999, 18(8): 931-940.
  • 3曹志强,张斌,王硕,谭民.未知环境中多移动机器人协作围捕的研究(英文)[J].自动化学报,2003,29(4):536-543. 被引量:13
  • 4Bemardine Dias M. Dynamic heterogeneous robot teams engaged in adversarial tasks[EB/OL]. 2005. http://www.ri. cmu.edu/pub_files/pub4/dias_m_bernardine_2005_3/dias_m _bemardine_2005_3.pdf. 2005.
  • 5Sebastian Thrun, Wolfram Burgard, Dieter Fox. Probabilistic robotics[M]. Massachusetts: The MIT Press, 2005.
  • 6Almeida J M, Martins A, Silva E P. Simultaneous control, navigation and target tracking for robotic formations[J]. Multisensor Fusion and Integration for Intelligent Systems, 2006, 3(6): 291-296.
  • 7Ioannis Rekleitis. Cooperative localization and multi-robot exploration[D]. Montreal: School of Computer Science McGill University, 2003.
  • 8Bosse M, Newman P, Leonard J, et al. Simultaneous localization and map building in large-scale cyclic environments using the Atlas framework[J]. Int J Robotics Research, 2004, 23 ( 12): 1113-1140.
  • 9Andrew Howard. Multi-robot mapping using manifold representations[J]. Proc of the IEEE Special Issue on Multirobot Systems, 2006, 94(7): 1360-1369.
  • 10Jacky Chang H, George Lee C S, Charlie Hu Y, et al. Multi-robot SLAM with topological/metric maps[C]. Conf on Intelligent Robots and Systems. San Diego, 2007: 1467- 1472.

二级参考文献1

  • 1Y. Uny Cao,Alex S. Fukunaga,Andrew Kahng. Cooperative Mobile Robotics: Antecedents and Directions[J] 1997,Autonomous Robots(1):7~27

共引文献12

同被引文献30

  • 1曹志强,张斌,王硕,谭民.未知环境中多移动机器人协作围捕的研究(英文)[J].自动化学报,2003,29(4):536-543. 被引量:13
  • 2王巍,宗光华.基于“虚拟范围”的多机器人围捕算法[J].航空学报,2007,28(2):508-512. 被引量:15
  • 3原魁,李园,房立新.多移动机器人系统研究发展近况[J].自动化学报,2007,33(8):785-794. 被引量:73
  • 4李焕全.基于“势点”的多移动机器人协调围捕/拦截策略[J].自动化与仪表,2007,22(5):1-4. 被引量:9
  • 5Briff P,Lutenberg A,Vega L R.A primer on energy-efficient synchronization of WSN nodes over correlated rayleigh fading channels[J].Wireless Communications Letters,2014,3(1):38-41.
  • 6Movaghati S,Ardakani M.Particle-based message passing algorithm for inference problems in wireless sensor networks[J].Sensors Journal,2011,11(3):745-754.
  • 7Ahmed N,Rutten M,Bessell T.Detection and tracking using particle-filter-based wireless sensor networks[J].IEEE Trans on Mobile Computing,2010,9(9):1332-1345.
  • 8Chaudhari Q M,Serpedin E,Jang S K.Energy-efficient estimation of clock offset for inactive nodes in wireless sensor networks[J].IEEE Trans on Information Theory,2010,56(1):582-596.
  • 9Guo Hongyan,Chen Hong,Xu Feng.Implementation of EKF for vehicle velocities estimation on FPGA[J].IEEE Trans on Industrial Electronics,2013,60(9):3823-3835.
  • 10Jayesh H K,Petar M.Gaussian sum particle filtering[J].IEEE Trans on Signal Processing,2003,51(10):2602-2701.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部