摘要
提出了支付值为区间直觉模糊集的矩阵对策定义及其解的概念,将求解局中人的极大-极小与极小-极大策略问题转化为求解一对辅助的非线性多目标规划,进而转化为一对易于求解的原始-对偶线性规划.数值实例表明了所提方法的有效性和实用性.所提出的区间直觉模糊集矩阵对策理论与方法既是对经典矩阵对策理论的发展,又可为解决其他带有区间直觉模糊信息的对策问题提供新的途径.
The definition of a matrix game with payoffs of interval-valued intuitionistic fuzzy sets(IVIF-sets) and the concept of its solutions are given. The maximin and minimax strategies of two players can be obtained by solving a pair of primal-dual linear programming models derived from two auxiliary nonlinear multi-objective programming models. A numerical example shows that the proposed method is effective and practical. The concept and methodology of matrix games with payoffs of IVIF-sets are not only an extension of those of classical matrix games, but also provide a new route for solving matrix games with interval-valued intuitionistic fuzzy information.
出处
《控制与决策》
EI
CSCD
北大核心
2010年第9期1318-1323,共6页
Control and Decision
基金
国家自然科学基金项目(70571086
70871117)
大连理工大学人文社会科学基金项目(Duths2008407)
大连理工大学博士启动二期基金项目(3012-893305)
关键词
区间直觉模糊集
矩阵对策
线性规划
多目标规划
直觉模糊集
Interval-valued intuitionistic fuzzy set
Matrix game
Linear programming
Multiobjective programming
Intuitionistic fuzzy set