期刊文献+

基于进化停滞周期的局部变异PSO算法及其收敛性分析 被引量:3

PSO algorithm with local mutation in evolution stagnation cycle and its convergence analysis
原文传递
导出
摘要 为了克服粒子群优化算法容易陷入局部最优而发生早熟收敛的问题,提出一种基于进化停滞周期的局部变异粒子群优化算法.算法引入进化停滞周期和近期全局最优位置的概念,使粒子的飞行受近期全局最优位置影响,并在种群进化停滞时对随机选中的局部粒子执行变异操作,增加种群多样性,扩大搜索范围,提高求解质量.算法用种群进化停滞周期代替多样性度量,避免了多样性计算引起的高计算复杂度.对于几个常用基准函数的仿真结果验证了算法的合理性和有效性. To overcome the premature of particle swarm optimization(PSO) algorithm, an algorithm called particle swarm optimization with local mutation in evolution stagnation cycle(LSPSO) is presented. Concepts of evolution stagnation cycle and recent global best position are proposed, so that particles are in?uenced by recent global best position instead of global best position, and a random local mutation operation of particles is taken when the evolution of population stagnates. These strategies enrich the diversity of population, extend the search space, and improve the quality of solution. Instead of computing the diversity of population, evolution stagnation cycle is used for lower computing complexity. The simulation results show the reasonability and effectiveness of the algorithm.
作者 曾华 吴耀华
出处 《控制与决策》 EI CSCD 北大核心 2010年第9期1333-1337,共5页 Control and Decision
基金 国家自然科学基金项目(50175064) 山东大学研究生自主创新基金项目(31400070613065)
关键词 多峰优化 粒子群优化算法 进化停滞周期 局部变异 Multimodal optimization Particle swarm optimization Evolution stagnation cycle Local mutation
  • 相关文献

参考文献13

二级参考文献70

共引文献236

同被引文献37

  • 1黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策,2006,21(2):175-179. 被引量:41
  • 2倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:68
  • 3Kennedy J, Eberhart R. Particle Swarm Optimization [ C l// Proc. of IEEE Int. Conf. on Neural Networks. Perth: [ s. n. ] ,1995:1942-1948.
  • 4Clerc M, Kennedy J. The particle swarm explosion, stability, and convergence in multi dimension complex space [ J ]. IEEE Trans on Evolutionary Computation, 2002,6 ( 1 ) : 58 - 73.
  • 5Shi Y H, Eherhart R C. Empirical study of particle swarm opti- mization[ C]//Proceedings of the IEEE Congress on Evolu- tionary Computation. Washington D C, USA : [ s. u. ], 1999 :1945-1950.
  • 6Yang Xueming, Yuan Jinsha, Yuan Jiangye, et al. A modified particle swarm optimizer with dynamic adaptation [ J ]. Applied Mathematics and Computation,2007,189 : 1205-1213.
  • 7Garcia-Villoria A, Pastor R. Introducing dynamic into a dis- crete particle swarm optimization [ J ]. Computers & Opera- tions Research,2009,36 : 951-966.
  • 8刘建华,樊晓平,瞿志华.一种基于相似度的新型粒子群算法[J].控制与决策,2007,22(10):1155-1159. 被引量:19
  • 9Li Wenfeng, Bao Junrong, Shen Weiming. Collaborative wireless sensor networks:A survey[ C]//Systems,Man, and Cybernetics, Anchorage : IEEE ,2011:2614 -2619.
  • 10Kulkami R V, Venayagamoorthy G K. Particle swarm optimization in wireless sensor networks : A brief survey [ J ]. IEEE Trans on Systems, Man, and Cybernetics, Part C : Applications and Re- views ,2010,40(5 ) : 1 -7.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部