期刊文献+

基于改进活动轮廓模型的人脸分割 被引量:2

Face Segmentation Based on Improved Active Contour Model
下载PDF
导出
摘要 人脸图像往往轮廓边界模糊、梯度不明显,常规活动轮廓模型通常无法获得理想的分割效果。为实现准确的人脸轮廓定位及分割,结合人脸检测、活动轮廓模型和数学形态学算子提出一个基于曲线演化的人脸分割方案,并提出一个改进的活动轮廓模型,有效提高了人脸轮廓定位精度和算法收敛速度。实验结果表明该模型可以有效地检测出局部模糊或分断边界而且演化曲线不会断裂,能够获得较好的人脸分割结果;此外,本文提出的C-V模型的窄带实现方法使计算量减少60%。 As the face image always has a blur boundary and little gradient change,the region segmentations obtained by the original active contour model are generally unsatisfactory. To achieve more accurate facial contour extraction and face segmentation,a new face segmentation scheme based on curve evolution model is proposed,which is a combination of face detection,active contour model and mathematical morphology operators. Moreover,an improved active contour model is proposed to increase the accuracy of face contour extraction and speed up the convergence process. Experimental results show that the im- proved active contour model can effectively detect the local blur and breaking boundaries without any fractures in the curve,resulting in a favorable face segmentation. In addition,the improved narrow-band method reduces the comoutation by 60%.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2010年第3期170-174,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(60773113) 重庆市杰出青年科学基金资助项目(2008BA2041) 重庆市自然科学基金重点项目(2008BA2017) 西南交通大学青年教师起步项目(2009Q86)
关键词 人脸分割 几何活动轮廓模型 无边缘活动轮廓模型 水平集 face segmentation geodesic active contour model chan-vese model level set method
  • 相关文献

参考文献8

  • 1OSHER S,SETHIAN J A. Fronts propagating with curvature dependent speed:algorithms based on hamilton-jacobi formulations [J]. Journal of Computational Physics, 1988,79 (1) : 12-49.
  • 2SETHIAN J A. Level set methods and fast marching methods:evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science [M ]. Cambridge, United Kingdom : Cambridge University Press, 1999.
  • 3CHANT F,VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001,10 (2):266- 277.
  • 4李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:125
  • 5潘青,徐国良.曲面变形的水平集方法[J].计算机学报,2009,32(2):213-220. 被引量:5
  • 6CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours [J]. International Journal of Computer Vision, 1997,22(1):61-79.
  • 7MUMFORD D,SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems [J]. Communications on Pure and Applied Mathematics, 1989,42(5):577-685.
  • 8VIOLA P,JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society Press,2001:511-518.

二级参考文献2

共引文献128

同被引文献13

  • 1D Chai, K N Ngan. Face segmentation using skin-color map in videophone application[J], IEEE Trans Circ. Syst Video Technol, 1999,9 (4) :551-564.
  • 2R L Hsu, M A Mottaleb, A K Jain. Face detection in color images[J]. IEEE Trans Pattern Anal Mach Intell, 2002,24(5): 696-706.
  • 3J Canny. A computational approach to edge detection[ J ].IEEE Trans Pattern Anal Mach Intell, 1986,9 (6):679-698.
  • 4H Li, K N Ngan. Saliency model-based face segmentation and tracking in head-and-shoulder video sequences [J ]. Jour- nal of Visual Communication and Image Representation. 2008,19(5 ):320-328.
  • 5Felzenszwalb P, Girshick R, McAllester D, et al. Object detection with discriminatively trained part-based models[ J]. Analysis and Machine Intelligence, 2010, 32(9) : 1627 -1645.
  • 6Dalal N, Triggs B. Histograms of oriented gradients for human detection[ C ]//Proceedings of the IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. San Diego, 2005 : 886 - 893.
  • 7Desai C, Ramanan D, Fowlkes C. Discriminative models for multi-class object layout[ C]//Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, 2009:229 -236.
  • 8李艳灵,魏涛.基于轮廓波变换的模糊聚类图像分割[J].信阳师范学院学报:自然科学版,2011,24(3):405-409.
  • 9Plath N, Toussaint M, Nakajima S. Multi-class image segmentation using conditional random fields and global classification [ C ]// Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, 2009:817 -824.
  • 10Comaniciu D, Meer P. Mean shift: a robust approach to ward feature space analysis [ J ]. IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2002, 24(5): 603-619.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部