期刊文献+

收获捕食者的时滞脉冲捕食模型 被引量:1

A Delay Impulsive Predator-Prey Model With Harvesting Predator
原文传递
导出
摘要 讨论了与可再生生物资源管理相关的食饵具脉冲扰动与捕食者具连续收获的阶段结构时滞捕食-食饵模型,得到了捕食者灭绝周期解的全局吸引和系统持久的充分条件.也证明了系统的所有解的一致完全有界.结论为现实的可再生生物资源管理提供了可靠的策略依据. In this work,we consider a delayed predator-prey biological resource management model with impulsive perturbations on prey and continuous harvesting on predator. Sufficient conditions which guarantee the global attractivity of predator-extinction periodic solution and permanence of the system are obtained.We also prove that all solutions of the system are uniformly ultimately bounded.Our results provide reliable tactic basis for the practical biological resource management.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第19期91-99,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(10961008) 贵州省科学技术基金(2010J2130)
关键词 脉冲扰动 捕食-食饵模型 连续收获 灭绝 持久 impulsive perturbations predator-prey model continuous harvesting extinction permanence
  • 相关文献

参考文献1

二级参考文献5

  • 1Freedman H I, Wu J H. Persistence and global asymptotic stability of single species dispersal models with stage structure. Quarterly of Applied Mathematics, 1991, 49:351-371.
  • 2Yang Kuang. Delay differential equations with application in population dynamics. Academic Press, INC,1993. 119-126.
  • 3Hale J K, Waltoman P. Persistence in infinite-dimensional systems. SIAM J Math Anal, 1989, 20:388-396.
  • 4Wang Wendi, Chen Lansun. A predator-prey system with stage-structure for predator. Computers Math Applic, 1997,33(8): 83-91.
  • 5Aiello W G, Freedman H I. A time delay model of single species growth with stage structure. Math Biosci,1990. 101:139-153.

共引文献9

同被引文献9

  • 1Aziz-Alaoui M A,Daher Okiye M. Boundedness and Global Stability for a Predator-prey Model with Modified Leslie-Gow- er and Holling-type Ⅱ Schemes[J]. Applied Mathematics Letters, 2003,16(7) :1069-1075.
  • 2Zhu Y,Wang K. Existence and Global Attractivity of Positive Periodic Solutions for a Predator-Prey Model with Modified Leslie-Gower Holling-type Ⅱ Schemes[J]. Journal of Mathematical Analysis and Applications ,2011,384:400-408.
  • 3Nindjin A F, Aziz-Alaoui M A,Cadivel M. Analysis of a Predator-prey Model with Modified Leslie-Gower and Holling- type Ⅱ Schemes with Time Delay[J]. Nonlinear Analysis :Real World Applications, 2006,7 : 1104-1118.
  • 4Zhang G, Shen Y,Chen B. Positive Periodic Solutions in a Non-selective Harvesting Predator-prey Model with Multiple Delays[J]. Journal of Mathematical Analysis and Applications ,2012,395(1) :298-306.
  • 5Kar T K,Ghorai A. Dynamic Behaviour of a Delayed Predator-prey Model with Harvesting[J]. Applied Mathematics and Computation,2011,217(22) :9085-9104.
  • 6Xiao D,Jennings L S. Bifurcations of a Ratio-dependent Predator-prey System with Constant Rate Harvesting[J]. SIAM Journal on Applied Mathematics ,2005,65(3) :737-753.
  • 7Gupta R P,Chandra P. Bifurcation Analysis of Modified Leslie-Gower Predator-prey Model with Michaelis-Mentcn Type Prey Harvesting[J]. Journal of Mathematical Analysis and Applications, 2013,398: 278-295.
  • 8Kuang Y. On Neutral Delay Logistic Gause-type Predator-prey Systems[J]. Dynamics and Stability of Systems, 1991,6; 173-189.
  • 9Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin: Springer-Verlag, 1977.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部