期刊文献+

具有Holling Ⅲ功能反应和阶段结构的Gompertz生态系统的持久性

Permanence of a Gompertz Ecosystem with Holling Ⅲ Functional Response and Stage Structure for Predator
原文传递
导出
摘要 以生态学与微分方程的理论和方法为基础,建立了一类具有HollingⅢ功能反应和阶段结构的生态Gompertz模型.利用频闪映射,获得了捕食者灭绝周期解,分析了此周期解的全局吸引性.在对食饵进行脉冲收获和捕食者具有成长期时滞条件下,运用脉冲微分方程比较定理和小振幅扰动技巧,获得了系统一致持续生存的条件. In this paper,on the basis of the theories and methods of ecology and ordinary differential equations,an ecological Gompertz model with Holling Ⅲ functional response and stage structure for predator is established.By use of the stroboscopic map,a predator extinction periodic solution is obtained,and the global attractivity of the predator extinction periodic solution is analyzed.By using comparison theorem of impulsive differential equation and small amplitude perturbation skills,we get the sufficient condition for permanence of the system under impulsive harvest strategy for the prey and maturation time delay of predator.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第19期144-150,共7页 Mathematics in Practice and Theory
基金 山东省软科学研究计划项目(2009RKB153) 青岛市科技发展计划项目(KZJ-46)
关键词 HOLLING Ⅲ功能反应 阶段结构 时滞 脉冲 全局吸引性 持久性 Holling Ⅲ functional response stage structure delay impulsive effect global attractivity permanence
  • 相关文献

参考文献7

  • 1陈兰荪,孟建柱,焦建军.生物动力学[M].北京:科学出版社,2009.
  • 2王丽敏,谭远顺.周期Gompertz生态系统中的最优脉冲控制收获策略[J].系统科学与数学,2007,27(4):520-528. 被引量:13
  • 3王春花,李长国,裴永珍,刘俊峰.Gompertz模型的成年种群脉冲优化收获策略[J].天津理工大学学报,2007,23(4):80-82. 被引量:1
  • 4Bing Liu, Lansun Chen, Yujuan Zhang. The dynamics of a prey-dependent consumption model concerning impulsive control strategy[J]. Applied Mathematics and Computation, 2005, 169: 305- 320.
  • 5Xinzhu Meng, Jianjun Jiao, Lansun Chen. Global dynamics behaviors for a nonautonomous Lotka Volterra almost periodic dispersal system with delays[J]. Nonlinear Analysis: Theory, Methods Applications, 2008, 68(12): 3633-3645.
  • 6Jianjun Jiao, Xinzhu Meng, Lansun Chen. Global attractivity and permanence of a stage-structured pest management SI model with time delay and diseased pest impulsive transmission[J]. Chaos, Solitons and Fractals, 2008, 38(3): 658-668.
  • 7Xinzhu Meng, Jianjun Jiao, Lansun Chen. The dynamics of an age structured predator-prey model with disturbing pulse and time delays[J]. Nonlinear Analysis: Real World Applications, 2008, 9: 547-561.

二级参考文献29

  • 1[1]Clark C W.Mathemalical bioeconomics,the optimal management of renewable resources[M].New York:John Wiley Sons,1979.
  • 2[2]Fan M,Wang k.Optimal harvesting policy for single populations with periodic coefficients[J].Math Biosci,1988,152:165-177.
  • 3[3]裴永珍.脉冲微分方程在虫害控制、渔业管理以及周期时滞系统中的应用[D].大连:大连理工大学,2005.
  • 4[4]Bainov D,Simeonov P.Impulsive differential equations:periodic solutions and applications[M].New York:Longman Scientific and Technical,1993.
  • 5Agnew T T. Optimal exploitation of a fishery employing a non-linear harvesting function. Ecol. Modelling, 1979, 6: 47-57.
  • 6Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources. New York: Wiley, 1976.
  • 7Goh B S. Management and Analysis of Biological Populations. Elsevier 1980.
  • 8Bainov D D and Simeonov P. Impulsive Differential Equations: Periodic Solution and Applications. London: Longman, 1993.
  • 9Bainov D D and Simeonov P. Systems with Impulse Effects. Ellis Horwood Chichester, England. 1982.
  • 10Lakshmikantham V, Bainov D D and Simeonov P S. Theory of Impulsive Differential Equations. World Scientific Singapore, 1989.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部