期刊文献+

泰来藻、海菖蒲体内铜的化学形态与累积规律 被引量:9

Chemical forms and accumulation patterns of Cu in two sea grass species Thalassia hemprichii and Enhalus acoroides
原文传递
导出
摘要 采用化学逐步提取法,研究了中国2种典型热带海草泰来藻(Thalassia hemprichii)和海菖蒲(Enhalusa coroides)在不同浓度铜胁迫下,其不同部位(根、茎、叶)对铜的累积及其化学形态。结果表明:2种海草中铜的累积模式均表现为叶>根>茎,说明叶是铜最主要的累积部位;2种海草叶中的铜主要以盐酸提取态为主,表明稳定且毒性低的草酸铜是海草叶中铜的主要存在形式;2种海草茎中铜都是以氯化钠提取态为最主要的存在形态,表明海草茎中的铜主要是以活性较高的蛋白质结合形态存在;在泰来藻根部,醋酸提取态为铜主要的存在形态,说明铜主要以毒性较低且较稳定的磷酸盐形式存在,而在海菖蒲根部,铜以多种结合形态存在。此结果可为研究重金属对海草的毒害机理提供依据。 By the method of sequential extraction,this paper studied the Cu accumulation and its chemical forms in different parts of two tropical sea grass species Thalassia hemprichii and Enhalus acoroides under different ambient Cu concentrations. For both T. hemprichii and E. acoroides,the Cu accumulation was in the order of leaf root rhizome,suggesting that Cu was mainly accumulated in the leaves of the two sea grass species. HCl-extractable Cu was the predominant Cu form in leaf,indicating that the Cu in sea grass leaves was stably fixed and occurred as low toxicity copper complexes. On the other hand,NaCl-extractable Cu was the main Cu form in rhizome,suggesting that the Cu in rhizome was combined with protein and formed as relatively high activity copper complexes. In T. hemprichii root,acetic acid-extractable Cu was the main Cu form,suggesting that the Cu was mostly existed as insoluble copper phosphate,but in E. acoroides root,various Cu forms were found. Our results could provide a basis for studying the toxic mechanisms of heavy metals on sea grasses.
出处 《生态学杂志》 CAS CSCD 北大核心 2010年第10期1993-1997,共5页 Chinese Journal of Ecology
基金 国家自然科学基金项目(40776086) 中国科学院南海海洋研究所领域前沿项目(LYQY200706) 908专项资助项目(GD908-02-11 GD908-01-03)
关键词 海草 泰来藻 海菖蒲 CU 累积 化学形态 seagrass Thalassia hemprichii Enhalus acoroides Cu accumulation chemical form.
  • 相关文献

参考文献9

二级参考文献179

  • 1徐在宽.水葫芦对水质改良效果的研究[J].南京林业大学学报(自然科学版),2000,24(z1):116-117. 被引量:26
  • 2龚子同,张效朴.中国的红树林与酸性硫酸盐土[J].土壤学报,1994,31(1):86-94. 被引量:52
  • 3郑绍建,胡霭堂.淹水对污染土壤镉形态转化的影响[J].环境科学学报,1995,15(2):142-147. 被引量:84
  • 4董全.西方生态学近况[J].生态学报,1996,16(3):314-324. 被引量:33
  • 5郁建栓.浅谈重金属对生物毒性效应的分子机理[J].环境污染与防治,1996,18(4):28-31. 被引量:36
  • 6MACNAIR MR, TILSTONE GH, SMITH SE. The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Banuelos G, eds, Phytoremediation of contaminated soil and water [M]. CRC Press LLC, 2000: 235-250.
  • 7SCHAT H, LLUGANY M, BERNHARD R. Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G, eds. Phytoremediation of contaminated soil and water [M]. CRC Press LLC, 2000: 171-188.
  • 8DE Vos CHR, SCHAT H, DE WAAL MAM, VOOIJS R, ERNST WHO. Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus [J]. Physiologia Plantarum, 1991, 82: 523-528.
  • 9DIETZ K-J, BALER M, ~ER U. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J, eds. Heavy metal stress in plants: from molecules to ecosystems. Berlin: Springer-Verlag, 1999: 73-97.
  • 10GALLI U, SCHUEPP H, BRUNOLD C. Heavy metal binding by myeorrhizal fungi [J]. Physiologia Plantarum. 1994, 92(2): 364-368.

共引文献645

同被引文献190

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部