期刊文献+

玻璃纤维增强回收聚对苯二甲酸乙二醇酯复合材料的力学性能研究 被引量:1

Mechanical Properties of Recycled Poly(ethylene terephthalate)/Glass Fiber Composites
下载PDF
导出
摘要 用熔融共混法制备了玻璃纤维(GF)增强回收聚对苯二甲酸乙二醇酯(rPET)(rPET/GF)复合材料,研究了复合材料的力学性能并进一步利用Halpin-Tsai模型、Krenchel-COX模型和Kelly-Tyson模型探讨了GF的近程和远程结构与复合材料性能间的关系。结果表明,GF对rPET具有较为显著的增强、增韧效果。当玻璃纤维含量为30%(质量分数,下同)时,复合材料的冲击强度、拉伸强度以及弯曲强度分别提高了245%、113%和84%;长径比和取向度是影响rPET/GF复合材料性能的重要结构参数;Halpin-Tsai方程能够较好地描述rPET/GF复合材料中GF的有效长径比;而相比于Krenchel-COX方程,由Kelly-Tyson方程获得的GF的取向度更接近实验结果。 Composites of recycled PET (rPET) filled with glass fiber (GF) were prepared via melt mixing. The mechanical properties of the rPET/GF composites were studied through various models including Halpin-Tsai, Krenchel-COX, and Kelly-Tyson equations, aiming at exploring the relations between the short-term and long-term structures of GF and the properties of composites. It showed that the filled GF had evident reinforcing and toughening effects on the rPET. When the GF loading was 30 wt %, the toughness, tensile and bending strengths increased by about 245%, 113%, and 84%, respectively. The aspect ratio and the orientation of GF constituted two important structural parameters vital to the final properties of composites. The Halpin-Tsai equation could be well used to describe aspect ratio of GF. The orientation factor of GF obtained from Kelly-Tyson equation was closer to the experimental value than that from Krenchel-COX equation.
出处 《中国塑料》 CAS CSCD 北大核心 2010年第9期84-89,共6页 China Plastics
基金 中国博士后基金(200902532)
关键词 回收聚对苯二甲酸乙二醇酯 玻璃纤维 复合材料 力学性能 recycled poly(ethylene terephthalate) glass fibre composite mechanical property
  • 相关文献

参考文献13

  • 1Incarnato L, Scarfato P, Maio L D, et al. Structure and Rheology of Recycled PET Modified by Reactive Extrusion [J]. Polymer, 2000, 48(18): 6825-6831.
  • 2Yu Z Z, Yang M S, Dai S C, et al. Toughening of Recycled Poly(ethylene terephthalate) with a Maleic Anhydride Grafted SEBS Triblock Copolymer[J]. j Appl Polym Sci, 2004, 93(3): 1462-1472.
  • 3Giraldi A L F M, Bartoli J R, Velasco J I, et al. Glass Fiber Recycled Poly ( ethylene terephthalate) Composites: Mechanical and Thermal Properties [ J]. Polym Test, 2005, 24(4): 507-512.
  • 4Thomason J L. The Influence of Fiber Length and Concentration on the Properties of Glass Fiber Reinforced Polypropylene: 5. Injection Molded Long and Short Fiber PP[J]. Composites,2002, 33(12): 1641-1652.
  • 5Halpin J C, Kardos J L. The Halpin-Tsai Equations: a Review[J]. Polym Eng Sci, 1976, 16(5):344-352.
  • 6Switzer L HⅢ, Klingenberg D J. Rheology of Sheared Flexible Fiber Suspensions via Fiber-level Simulations[J]. J Rheol, 2003, 47(3): 759-778.
  • 7Marquez A, Quijano J, Gaulin M. A Calibration Technique to Evaluate the Power-law Parameters of Polymeric Melts Using a Torque-rheometer[J]. Polym Eng Sci, 1996, 36(20): 2556-2563.
  • 8Krenchel H. Theoretical and Practical Investigation of the Elasticity and Strength of Fiber reinforced Material, Doctoral Thesis [D]. Copenhagen: Akademisk Forlag, 1964.
  • 9Thomason J L, Vlug M A. Influence of Fibre Length and Concentration on the Properties of Glass Fiber-reinforced Polypropylene: 1. Tensile and Flexural Modulus [J]. Composites, 1996, 27(6): 477-484.
  • 10Kelly A, Tyson W R. Tensile Properties of Fiber-reinforced Metals[J]. J Mech Phys Solids, 1965, 13(6): 329-350.

同被引文献14

  • 1苟玉慧,刘志力.增强尼龙中玻纤长度及其分布对性能的影响[J].塑料助剂,2005(5):38-40. 被引量:10
  • 2Kandola B K,Toqueer-U1-Haq R.The effect of fibre content on the thermal and fire performance of polypropylene-glass composites[J]. Fire and Materials, 2012,36 (8) : 603-613.
  • 3Thomason J L.The influence of fiber length and concen- tration on the properties of glass fiber reinforced polypro- pylene:5. Injiection molded long and short fiber PP[J]. Composites Part A:Applied Science and Manufacturing, 2002,33(12) : 1641-1652.
  • 4Nguyen B N, Bapanapalli S K, Holbery J D, et al. Fiber length and orientation in long-fiber injection-molded ther- moplastics-Part I: Modeling of microstructure and elastic properties [J]. Journal of Composite Materials, 2008,42(10) : 1003-1029.
  • 5Vas L M,Ronkay F,Czigdny T.Active fiber length distri- bution and its application to determine the critical fiber length[J].Polymer Testing, 2009,28 (7) : 752-759.
  • 6吴明嘉,王子树,董万堂.低温氧等离子体灰化有机物质[J].分析化学,1982,10(4):249.
  • 7Zhandarov S, Milder E. Characterization of fiber/matrix interface strength : applicability of different tests, approa- ches and parameters [J].Composites Science and Tech- nology, 2005,65(1) : 149-160.
  • 8Gibson R F. Principles of composite material mechanics [M].3rd ed.[s.l. ] : CRC Press, 2011.
  • 9Nuriel S,Katz A, Wagner H D. Measuring fiber-matrix interfacial adhesion by means of a "drag-out' microme- chanical test[J].Composites Part A: Applied Science and Manufacturing, 2005,36 (1) : 33-37.
  • 10段召华,付祥,陈弦,何波兵.长玻璃纤维增强聚丙烯[J].高分子材料科学与工程,2010,26(4):124-126. 被引量:35

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部