期刊文献+

一种基于分而治之的语音识别错误纠正方案 被引量:1

Speech recognition error correction scheme based on divide-and-conquer
下载PDF
导出
摘要 介绍了一种基于分而治之的语音识别错误纠正方案,首先利用混淆网络把连续语音识别问题转换为顺序的、独立的分类子任务。每个分类子任务可看做是孤立词识别问题,通过训练专门的支持向量机来区分混淆网络的识别候选。提出了一种快速的基于码本转换的语音向量对齐方法,解决了变长语音向量无法直接作为支持向量机输入的问题。通过一个普通话音节识别任务的实验结果表明,该方案能有效提高系统的正确率。 This paper introduced a divide-and-conquer speech recognition error correction scheme. Firstly transformed continuous speech recognition problem into sequential,independent,classification tasks using confusion network( CN) . Each of these sub-tasks could be taken as an isolated word recognition problem and specialized support vector machines ( SVMs) were trained and applied to each problem to discriminate the recognized candidates from CN. Proposed a fast codebook transformation based speech vector alignment method to address the problem that variable length speech vector could not be directly acted as the input vector for SVM. Experiment on a mandarin syllable recognition task shows the proposed scheme can improve the recognition accuracy effectively.
作者 孙成立
出处 《计算机应用研究》 CSCD 北大核心 2010年第10期3841-3843,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60705019) 南昌航空大学人才基金资助项目2009ZC56)
关键词 语音识别 错误纠正 置信度 支持向量机 speech recognition error correction confidence measure support vector machine
  • 相关文献

参考文献9

  • 1BRILL E. Transformation-based error-driven learning and natural language : a ease study in part of speech tagging [ J ]. Computational Linguistics, 1995,21 (4) :543- 565.
  • 2JELINEK F. Speech recognition as code-breaking, Technology Report [ R]. 1996.
  • 3VAPNIK V. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 1995.
  • 4MANGU L, BRILL E, STOLCKE A. Finding consensus in speech recognition: word error minimization and other applications of confusion networks[ J]. Computer Speech and Language, 2000, 14 (4) : 3?3-400.
  • 5PLATF J C. Probabilities for sv machines[ M ]. [ S. l. ] : MIT Press, 2000 : 61 - 74.
  • 6WAN V, RENAES S. Speaker verification using sequence discriminant support vector machines[J]. IEEE Trans Speech and Audio Processing, 2005, 13 ( 2 ) :203- 210.
  • 7JAAKKOLA T S, HAUSSLER D. Exploiting generative models in discriminative classifiers, in advances in neural information processing systems 11 [M]. [ S. l. ] :MIT Press, 1999.
  • 8VENKATARAMANI V, CHAKARABARTY S, BYRNE W. Ginisupport vector machines for segmental minimum Bayes risk decoding of continuous speech[J]. Computer Speech & Language, 2007,21 (3) :423-442.
  • 9VOJTECH F, VACLAV H. Statistical pattern recognition toolbox for MATLAB [ EB/OL]. http ://cmp. felk. cvut. cz.

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部