期刊文献+

F_2上周期多序列及其广义对偶多序列的复杂性分析 被引量:3

Joint linear complexity of binary periodic multi-sequences and its generalized bit-wise negative sequences over F_2
下载PDF
导出
摘要 联合线性复杂度是度量周期多序列强度的一个重要指标。将二元周期多序列按位取反后得到的周期多序列,与原序列有着密切的联系。针对这类特殊的周期多序列,提出了二元周期多序列的广义对偶多序列定义,讨论了它们联合线性复杂度之间的关系。同时,定义了二元周期多序列的联合重量复杂度,并给出了它们联合重量复杂度之间的关系。 Joint linear complexity is an important measurement index to the strength of periodic multi-sequences. Under the close relationship between the binary periodic multi-sequences and its bit-wise negative periodic multi-sequences,this paper proposed the definition of binary periodic generalized duality multi-sequences,and discussed the relationship about the joint linear complexity between them. At the same time,defined joint weight complexity of binary periodic multi-sequences,and gave the relationship of joint weight complexity.
出处 《计算机应用研究》 CSCD 北大核心 2010年第10期3880-3882,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60973125) 高校博士点基金资助项目(20080359003)
关键词 联合线性复杂度 联合重量复杂度 广义对偶多序列 极小多项式 joint linear complexity joint weight complexity generalized duality multi-sequences minimum polynomial
  • 相关文献

参考文献14

  • 1DING Cun-sheng, XIAO Guo-zhen, SHAN Wei-juan. The stability theory of stream ciphers[ C]//Lecture Notes in Computer Science. Berlin:Springer, 1991.
  • 2HASSE H. Theorie der hoheren differentiale in einem algebraischen Funktiorienkorper mit vollkommenem Konstantenkorper bei beliebiger Charakteristik [ J ]. Journal Reine Angewandte Mathematik, 1936, 175:50-54.
  • 3NIEDERREITER H. Linear complexity and related complexity measures for sequences [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 2003 : 1- 17.
  • 4MEIDL W, NIEDERREITER H. The expected value of the joint linear complexity of periodic muhisequences[ J]. Journal of Complexity, 2003, 19(1) :61-72.
  • 5MEIDL W, WINTERHOF A. On the joint linear complexity profile of explicit inversive multisequences [ J ]. Journal of Complexity, 2005, 21 (3) :324- 336.
  • 6XING Chao-ping, LAM K Y, WEI Zheng-hong. A class of explicit perfect multi-sequences [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 1999:299- 305.
  • 7XING Cao-ping. Multi-sequences with almost perfect linear complexity profile and function fields over finite fields[ J]. Journal of Complexity, 2000, 16(4) :661-675.
  • 8ARMAND M A. Mulfisequence shift register synthesis over commutative rings with identity with applications to decoding cyclic codes over integer rings[ J]. IEEE Trans on Information Theory, 2004 , 50 ( 1 ) :220- 229.
  • 9CHEN Po. Multisequence linear shift register synthesis and its application to BCH decoding [ J ]. IEEE Trans on Communication, 1976, 29(4) :438-440.
  • 10FENG Gui-liang , TSENG K K. A generalized euclidean algorithmfor muhisequence shift-register synthesis[ J]. IEEE Trans on Information Theory, 1989, 35(3) :584-594.

二级参考文献3

  • 1Robert W. Rycroft and Don E. Kash. The Complexity Challenge: Technological Innovation for the 21st Century[M].New York: A Cassell Imprint,1999. 112- 130.
  • 2Lewis M. Branscomb, Fumio Kodama, and Richard Florida, Editors. Industrializing Knowledge: University - industry linkages in Japan and the United States[M]. The MIT Press,Cress, Cambridge, Massachusetts, and London, England. 1999. 204 - 205.
  • 3Morten Steffensen, Everett M. Rogers, Kristen Speakman. Spin- offs from research centers at a research university[ J ]. Journal of Business Venturing, 1999, (15) : 93 - 111.

共引文献6

同被引文献26

  • 1王菊香,朱士信.F_p上周期序列S~∞与~∞的线性复杂度分析[J].计算机应用研究,2009,26(2):742-743. 被引量:6
  • 2王丽萍,祝跃飞.F[x]-lattice basis reduction algorithm and multisequence synthesis[J].Science in China(Series F),2001,44(5):321-328. 被引量:4
  • 3苏明,符方伟.随机周期序列k错线性复杂度的期望上界[J].通信学报,2005,26(2):60-65. 被引量:4
  • 4ARMAND M A. Muhisequence shift register synthesis over commuta- tive rings with identity with applications to decoding cyclic codes over integer rings[J]. IEEE Trans on IT,2004,50( 1 ) :220-228.
  • 5CHEN P O. Multisequence linear shift register synthesis and its appli- cation to BCH decoding [ J ]. IEEE Trans on Communication, 1976,22(4) :438-440.
  • 6FENG G L,TSENG K K. A generalized euclidean algorithmfor multi- sequence shift-register synthesis [ J]. IEEE Trans on Information Theory, 1989,35 ( 3 ) : 584-594.
  • 7FENG G L, TSENG K K. A generalization of the Berlekamp-Massey algorithmfor multisequence shift-register synthesis with applications to decoding cyclic codes [ J]. IEEE Trans on Information Theory, 1991,37(5 ) :1274-1286.
  • 8ZHOU Jin-jun, QI Wen-feng, ZHOU Yu-jie. A generalization of Grebner bases and a synthesis algorithm of multisequences over ZP (m) [ J] . Science in China: Series A, 1995,38 (5) :552-561.
  • 9DING Cun-sheng, XIAO Guo-zhen, SHAN Wei-juan, The stability the- ory of stream ciphers [ C ]//Lecture Notes in Computer Science, vol 561. Berlin:Springer-Verlag, 1991:187.
  • 10HASSE H. Theorie der hoheren differentiale in einem algebraischen Funktionenkorper mit vollkommenem Konstantenkorper bei bellebiger Charakteristik [ J ]. Journal for die Reinound Angewandte Mathematik,2009,1936 ( 175 ) : 50- 54.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部