期刊文献+

一类新型的杂交共轭梯度法 被引量:1

A New Type of Hybrid Conjugate Gradient Methods
下载PDF
导出
摘要 提出了一个共轭梯度法βk的新公式并讨论了其性质,然后基于新参数公式,给出了一类新型的杂交共轭梯度法,该方法无需线搜索仍具有充分下降性,在弱Wolfe-Powell线搜索下具有全局收敛性.通过数值试验对新方法与HZ方法和PRP方法进行比较,结果表明新方法更有效. The paper puts forward a new conjugate gradient method βk and discusses its properties. Then,based on a new formula,the author proposes a new type of hybrid conjugate gradient method,which retains a sufficiently descent direction without utilizing the line search. Under the weak Wolfe-Powell line search,the method proves to be globally convergent. Numerical results show that the new method performs much better than both HZ and PRP methods.
作者 莫利柳
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第9期1-5,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10761001) 广西大学科研基金资助项目(XGL090035)
关键词 无约束优化 共轭梯度法 全局收敛性 unconstrained optimization conjugate gradient method global convergence
  • 相关文献

参考文献12

  • 1Fletcher R, Reeves C. Function Minimization by Conjugate Gradients [J]. Computer Journal, 1963, 7:163 - 168.
  • 2Polak E, Ribiere G. Non Sur La Convergence Des Directions Conjugates [J]. Rev Francaise Informat Recherche opertio- nelle, 3e Annee, 1969, 16: 35--43.
  • 3Polyak B T. The Conjugate Gradient Method in Extreme Problems [J]. USSR Computer Mathematics and Mathematics Physics, 1969, 99: 94- 112.
  • 4Hestenes M R, Stiefel E L. Methods of Conjugate Gradients for Solving Linear Systems [J]. J Res Nat Bur standards Sect, 1952, 5(49): 409--436.
  • 5Dai Y H, Yuan Y. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property [J]. SIAM Journal on Optimization, 2000, 10:177- 182.
  • 6Fletcher R. Practical Methods of Optimization [M]. New York: Wiley Interscience, 1987, 2: 63--76.
  • 7Hager W W, Zhang H C H. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search [J]. SIAM Journal on Optimization, 2005, 16(1): 170--192.
  • 8Touati D, Storey C. Efficient Hybrid conjugate Gradient Techniques [J]. Journal of Optimization Theory and Applications, 1990, 64: 379--397.
  • 9Zoutendijk G. Nonlinear Programming, Computational Methods, in Integer and Nonlinear Programming [J]. Abadie, ed, North Holland, Amsterdam, 1970:37-86.
  • 10More J J, Garbow B S, Hillstrome K E. Testing Unconstrained Optimization Software [J]. ACM Trans Math Softw, 1981, 7: 17--41.

二级参考文献9

  • 1Qun-yan Zhou,Wen-yu Sun.AN ADAPTIVE NONMONOTONIC TRUST REGION METHOD WITH CURVILINEAR SEARCHES[J].Journal of Computational Mathematics,2006,24(6):761-770. 被引量:7
  • 2戴彧虹,袁亚湘.非线性共轭梯度法[M].上海:上海科学技术出版社,2001:30-50.
  • 3Polak B T. The conjugate gradient method in extreme problems [J]. USSR Comput Math and Math. Phys, 1969, 9:94 --112.
  • 4Polak E,Ribire G. Note sur la convergence de directions conjugees [J]. Rev Francaise Informat Recherche Operatinelle, 1969, 16:35--43.
  • 5Fletcher R, Reeves C. Function minimization by conjugate gradients[J]. Compute J, 1964, 7 (2) :149 - 154.
  • 6Wei Zengxin, Yao Shengwei, Liu Liying. The convergence properties of some new conjugate gradient methods [J]. Applied Mathematics and Computation, 2006, 183 (2) : 1341 -- 1350.
  • 7Yao Shengwei, Wei Zengxin, Huang Hal, A Notes about wyl's conjugate gradient method and its applications [J]. Applied Mathematics and Computation, 2007, 191(2) : 381-- 388.
  • 8Huang Hai, Wei Zengxin, Yao Shengwei. The proof of the sufficient descent condition of the Wei-Yao-Liu conjugate gradient method under the strong Wolfe-Powell line search [J]. Applied Mathematics and Computation, 2007, 189 (2): 1241 -- 1245.
  • 9Gilbert J C, Nocedal J. Global convergence properties of conjugate gradient methods for optimization[J]. SIAM Journal of Optimization, 1992, 2(1): 21--42.

共引文献8

同被引文献11

  • 1喻高航,关履泰.具有充分下降性的修正PRP算法及其收敛性[J].中山大学学报(自然科学版),2006,45(4):11-14. 被引量:10
  • 2WEI Zeng-xin,YAO Sheng-wei,LIU Li-ying.The Convergence Properties of Some New Conjugate Gradient Methods[J].Applied Mathematics and Computation,2006,183(2):1341-1350.
  • 3YAO Sheng-wei,WEI Zeng-xin,HUANG Hai.A Notes about WYL’s Conjugate Gradient Method and Its Applications[J].Applied Mathematics and Computation,2007,191(2):381-388.
  • 4YUAN Gong-lin.Modified Nonlinear Conjugate Gradient Methods with Sufficient Descent Property for Large-scale Opti-mination Problems[J].Optimization Letters,2009(3):11-21.
  • 5ZHANG Hong-chao,HAGER W W.A Nonmonotone Line Search Technique and Its Application to Unconstrained Opti-mization[J].SIAM Journal on Optimization,2004,14:1043-1056.
  • 6MORE J J,GARBOW B S,HILLSTROME K E.Testing Unconstrained Optimization Software[J].ACM Trans MathSoftware,1981(7):17-41.
  • 7DOLAN E D,MORE J J.Benchmarking Optimization Software with Performance Profiles[J].Math Program,2002,91:201-213.
  • 8戴彧虹,袁亚湘.非线性共轭梯度法[M].上海:上海科学技术出版社,2001:30-50.
  • 9林穗华,黄海.一个双参数的共轭梯度法簇[J].西南师范大学学报(自然科学版),2007,32(6):43-47. 被引量:7
  • 10黄海,林穗华.改进的多参数非线性共轭梯度法的全局收敛性[J].西南师范大学学报(自然科学版),2010,35(2):76-80. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部