摘要
运用不动点指数理论考虑了二阶m-点边值问题u″(t)+λu(t)+f(t,u(t))=0t∈(0,1)u(0)=0u(1)=∑m-2i=1aiu(ξi)在f满足次线性或超线性条件下正解的存在性,其中λ∈[0,+∞),ai∈[0,+∞)且∑m-2i=1ai<1,ξi∈(0,1)(i=1,2,…,m-2),0<ξ1<ξ2<…<ξm-2<1,并得到了正解的一个存在性结果.
The second-order m-point boundary value problemu″(t)+λu(t)+f(t,u(t))=0t∈(0,1)u(0)=0u(1)=∑m-2i=1aiu(ξi)is considered under the sublinearity or superlinearity of the function f,where λ≥0,ai∈[0,+∞) with ∑m-2i=1ai1,ξi∈(0,1)(i=1,2,…,m-2),0ξ1ξ2…ξm-21. The existence of positive solutions is obtained by means of the fixed-point index theory.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第9期16-19,共4页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(11061030)
关键词
M-点边值问题
正解
不动点指数理论
m-point boundary value problem
positive solution
fixed-point index theory