期刊文献+

下颌骨节段性缺损修复组织工程中珊瑚支架残留率的研究

Scaffold residue proportion in coral-engineered bone repairing segmental mandibular defects
下载PDF
导出
摘要 目的探讨骨髓基质干细胞(bone marrow stromal cell,BMSC)复合珊瑚修复犬下颌骨节段性缺损支架的残留率。方法体外扩增、成骨诱导培养犬BMSC,分别将第二代细胞复合珊瑚后植入犬自体右侧3cm的下颌骨节段性缺损,术后12周(n=6),32周(n=6)取材后分别通过Micro-CT检测和大体、组织学图像分析骨修复、支架残留率和生物力学修复强度。结果 Micro-CT检测和组织学图像分析均表明,BMSC-珊瑚组组织工程骨12周时支架残留率显著高于32周(P<0.05),而新骨随材料降解逐步成熟;生物力学显示术后32周力学强度显著高于12周(P<0.05)。结论自体成骨诱导BMSC复合珊瑚形成的组织工程骨可良好修复犬下颌骨节段性缺损,随时间延长材料逐步降解,组织工程下颌骨进一步成熟。 Objective To analyze the residual material volume (RMV) in repair of canine segmental mandibular defects with coral-engineered bone [osteogenic induced bone marrow stromal cells (BMSC)-coral].Methods Isolated BMSC were in vitro expanded and osteogenic. In 12 canines, a 3 cm segmental mandibular defect at right mandible was created, the defects were repaired with BMSC-coral constructs. 6 canines were sacrificed at 12 weeks and 32 weeks, respectively. The engineered bone was evaluated by Micro-CT, gross and histomorphometry examination, and biomechanical analysis.Results Micro-CT and histomorphometry examination both revealed the RMV of coral-engineered bone at 12 weeks was significantly higher than at 32 weeks post-operatively (P 〈 0.05), and the new bone matured gradually during the scaffold degradation. The biomechanical strength of engineered bone at 12 weeks was significantly lower than at 32 weeks (P 〈 0.05).Conclusions Canine segmental mandibular defects could be well repaired by osteogenic induced BMSC-coral engineered bone, the engineered bone further matured synchronized scaffold resorption.
出处 《中国医药生物技术》 CSCD 2010年第5期348-352,共5页 Chinese Medicinal Biotechnology
基金 国家重点基础研究发展计划(973计划)组织工程基本科学问题项目(2005CB522700) 上海市教育委员会自然科学类科研创新项目(08YZ49)
关键词 下颌骨 骨髓祖代细胞 珊瑚虫纲 组织学图像分析 Mandible Myeloid progenitor cells Anthoroa Histomorphometry
  • 相关文献

参考文献13

二级参考文献34

  • 1祝联,崔磊,王敏,王倬,刘伟,曹谊林.应用珊瑚及骨髓基质干细胞复合物修复股骨缺损的实验研究[J].中华骨科杂志,2003,23(8):483-488. 被引量:25
  • 2袁捷,殷德民,王敏,许锋,崔磊,刘伟,曹谊林.犬骨髓基质干细胞复合珊瑚羟基磷灰石皮下成骨的实验研究[J].中国口腔颌面外科杂志,2005,3(3):207-211. 被引量:9
  • 3陈力,W.Klaes,S.Assenmacher.五种骨骼移植替代材料成骨性能的比较研究[J].中华医学杂志,1996,76(7):527-530. 被引量:9
  • 4[1]Oreffo RO, Triffitt JT. Future potentials for using osteogenic stem cells and biomaterials in orthopedics [J]. Bone, 1999,25(2 Suppl):S5- S9.
  • 5[2]Nagatomi J, Arulanandam BP, Metzger DW, et al. Frequency- and duration-dependent effects of cyclic pressure on select bone cell functions[J]. Tissue Eng, 2001, 7(6):717-728.
  • 6[3]Pavlin D, Dove SB, Zadro R, et al. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model:effect on type Ⅰ collagen and alkaline phosphatase genes[J].Calcif Tissue Iht, 2000, 67: 163-172.
  • 7[4]Pavlin D, Zadro R. Temproal pattern of stimulation of osteoblastassociated genes during mechanically-induced osteogenesis in vivo: early response of osteocalin and type Ⅰ collagen[J]. Connect Tissue Res, 2001, 42:135-148.
  • 8[5]Gluhak-Heinrich J, Ye L, Bonewald LF, et al. Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo[J]. J Bone Miner Res, 2003, 18(5):807-817.
  • 9[6]Wang L, Cowin SC, Weinbaum S, et al. Modeling tracer transport in an osteon under cyclic loading[J]. Ann Biomed Eng, 2000, 28(10):1200-1209.
  • 10[7]Goshima J, Goldberg VM, Caplan AI. The Osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks[J]. Clin Orthop, 1991, 262:298-311.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部