期刊文献+

一种基于语义可理解的信息过滤算法 被引量:3

Information Filtering Algorithm Based on Semantic Understanding
下载PDF
导出
摘要 个性化与准确化是信息过滤技术发展面临的关键问题。语义理解技术有助于解决这一关键问题。其基本思想是对信息内容以及用户需求进行形式化语义描述,使其具备计算机可理解的形式,进而以语义为标准实现信息过滤。该文提出定义信息领域本体以描述语义,并将信息语义分为信息特征项和其解释,同时将用户需求语义分为显性需求和隐性需求。进而,给出了信息语义理解判定方法和用户需求语义理解判定方法。最后,该文提出了基于语义可理解的信息过滤算法。实验分析表明,这种信息过滤方式能够有效地提高信息获取的效率。 Personalization and accuracy are the key issues for the development information filtering.Research on semantics understanding will help solve the issues.The basic idea is to describe the semantics of information content and user requirements formally so that computer would understand the formal semantics.Then the semantics would be criterion for information filtering.In this paper information domain ontology is defined to describe semantics.Information semantics is composed by information feature terms and their explanations,and user requirements semantics is represented by definite requirements and latent requirements.Furthermore,the judging methods of information semantics understanding and user requirement semantic understanding are proposed.Finally,this paper presents the information filtering algorithm based on semantic understanding.Experiments show that the information filtering algorithm is effective and feasible.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第10期2324-2330,共7页 Journal of Electronics & Information Technology
基金 国家863计划项目(2008AA04Z106) 国家自然科学基金(70771077) 上海市科委制造业信息化专项基金(08DZ1122300) 上海信息化发展专项资金(200901015)资助课题
关键词 信息处理 信息过滤 语义 语义可理解 信息领域本体 Information processing Information filtering Semantics Semantics understanding Information domain ontology
  • 相关文献

参考文献14

  • 1Peter F W and Susan D T.Personalized information delivery:An analysis of information filtering methods.Communications of the ACM,1992,35(12):51-60.
  • 2Belkin N J and Bruce Croft W.Information filtering and information retrieval:Two sides of the same cion.Communications of the ACM,1992,35(12):29-38.
  • 3Bhandarkar Suchendra M and Luo Xing-zhi.Integrated detection and tracking of multiple faces using particle filtering and optical flow-based elastic matching,Computer Vision and Image Understanding,2009,113(6):708-725.
  • 4徐小龙,王汝传.基于智能Agent的多维权值信息检索模型[J].电子与信息学报,2008,30(2):482-485. 被引量:4
  • 5Cohen W.Learning rules that classify email.AAAI Spring Symposium on Machine Learning in information Access,Stanford,USA,March 1996:18-25.
  • 6Li Kang,Zhong Zhen-yu,and Ramaswamy Lakshmish.Privacy-aware collaborative spam filtering.IEEE Transactions on Parallel and Distributed Systems,2009,20(5):725-739.
  • 7Moon Taesup and Weissman Tsachy.Universal filtering via hidden Markov modeling.IEEE Transactions on Information Theory,2008,54(2):692-708.
  • 8Estévez Pablo A,Tesmer Michel,Perez Claudio A,and Zurada Jacek M.Normalized mutual information feature selection.IEEE Transactions on Neural Networks,2009,20(2):189-201.
  • 9曾春,邢春晓,周立柱.基于内容过滤的个性化搜索算法[J].软件学报,2003,14(5):999-1004. 被引量:118
  • 10洪宇,张宇,郑伟,刘挺,李生.信息过滤中基于二元近似关系分布的噪声屏蔽算法[J].软件学报,2008,19(11):2887-2898. 被引量:3

二级参考文献25

  • 1Zhang Y, Callan J. Maximum likelihood estimation for filtering thresholds. In: Croft BW, Harper DJ, Kraft DH, Zobel J, eds. Proc. of the 24th Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR 2002). New York: ACM Press, 2002.294-302.
  • 2Yang YM, Kisiel B. Margin-Based local regression for adaptive filtering. In: Donald K, Ophir F, Joachim H, Sajada Q, Len S, eds. Proc. of the 12th Int'l Conf. on Information and Knowledge Management. New Orleans: ACM Press, 2003.88-95.
  • 3Allan J. Incremental relevance feedback for information filtering. In: Hans PF, Donna H, Peter S, Ross W, eds. Proc. of the 19th Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM Press, 1996. 270-277.
  • 4Joachims T. Optimizing search engines using clickthrough data. In: Randy G, David H, Daniel K, Raymond N, eds. Proc. of the 8th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD2002). Edmonton: ACM Press, 2002. 102-110.
  • 5Zeng C, Xing CX, Zhou LZ. A survey of personalization technology. Journal of Software, 2002,13(10):1952-1961 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/13/1952.pdf
  • 6Robertson SE, Walker S, Jones S. Okapi at TREC-3. In: Harman DK, eds. Overview of the 3rd Text Retrieval Conf. (TREC-3) NIST. Gaithersburg: NIST Special Publication, 1995. 109-126.
  • 7Grove AJ, Littlestone N, Schuurmans D. General convergence results for linear discriminant updates. Machine Learning, 2001,43(3): 173-210.
  • 8Xie CF, Li X. A sequence-based automatic text classification algorithm. Journal of Software, 2002,13(4):783-789 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/13/783.pdf
  • 9Collins M, Schapire RE, Singer Y. Logistic regression, AdaBoost and Bregman distance. Machine Learning, 2002,48:253-285.
  • 10Hang XJ, Xia YJ, Wu LD. A text filtering system based on vector space model. Journal of Software, 2003,14(3):435-442 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/14/435.htm

共引文献122

同被引文献15

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部