期刊文献+

基于动态BP算法的非线性滞后系统辨识 被引量:5

Nonlinear time delay systems identification based on dynamic BP algorithm
下载PDF
导出
摘要 非线性动态系统的建模一直是控制领域的重要问题之一.针对这一问题,特别是包含滞后环节的非线性系统建模问题,提出了一种引入自适应延迟的动态BP(back propagation)学习算法.该算法在传统多层感知机神经网络结构基础上,在网络的第1隐层和输出层分别引入可调节的自适应延迟参数,通过误差梯度对其进行修正,实现了对延迟参数的辨识.仿真结果表明,所提出的方法能够有效实现对非线性滞后系统的辨识,并能够对系统的延迟时间进行准确估计. The modeling of nonlinear dynamic system is an important problem in the domain of automatic control.For the problem,especially for the nonlinear time delay system,a novel dynamic BP(back propagation)neural network algorithm with adaptive time delay parameters is proposed.Based on the traditional multilayer perceptron neural network structure,the adaptive time delay parameters are employed in the first hidden layer and output layer.The gradient descent method helps to realize the parameter adjusting and time delay estimation.The simulation results show that the proposed method can not only identify the nonlinear system effectively,but also estimate time delay exactly.
作者 韩冰 韩敏
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第5期777-781,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(60674073) "八六三"国家高技术研究发展计划资助项目(2007AA04Z158)
关键词 非线性系统 时滞 系统辨识 神经网络 nonlinear system time delay system identification neural network
  • 相关文献

参考文献14

  • 1GOMEZ O, OROLOV Y, KOLMANOVSKY I V. On-line identification of SISO linear time-invariant delay system from output measurements[J]. Automatica, 2007, 43(12) :2060-2069.
  • 2PEARSON R K. Outliers in process modeling and identification [J]. IEEE Transactions on Control Systems Technology, 2002, 10(1) : 55-63.
  • 3GOMEZ J C, JUTAN A, BAEYENS E. Wiener model identification and predictive control of a pH neutralisation process [J]. IEE Proceedings-Control Theory and Applications, 2001, 151 (3):329-338.
  • 4王蓬,李少远.一类非线性系统的多模型预测控制[J].控制与决策,2007,22(10):1113-1118. 被引量:15
  • 5邢宗义,胡维礼,贾利民.基于T-S模型的模糊预测控制研究[J].控制与决策,2005,20(5):495-499. 被引量:34
  • 6张日东,王树青.基于支持向量机的一类非线性系统预测控制[J].控制与决策,2007,22(10):1103-1107. 被引量:6
  • 7ABBAS H M, BAYOUMI M M. Volterra-system identification using adaptive real-coded genetic algorithm [J]. IEEE Transactions on Systems, Man and Cybernetics - Part A:Systems and Humans, 2006, 36(4) :671-684.
  • 8BALESTRINO A, VERONA F B, LANDI A. On-line process estimation by ANNs and Smith controller dedign [J]. IEE Proceedings-Control Theory and Applications, 1998, 145(2) :231-235.
  • 9陆燕,杜继宏,李春文.延迟时间未知的时延系统神经网络补偿控制[J].清华大学学报(自然科学版),1998,38(9):67-69. 被引量:27
  • 10REN X M, RAD A B. Identification of nonlinear systems with unknown time delay based on time-delay neural networks [J]. IEEE Transactions on Neural Networks, 2007, 18(5): 1536-1541.

二级参考文献33

共引文献79

同被引文献47

  • 1邹伟,孙瑜,周海君.纸浆浓度的仿人智能PID控制[J].中国造纸,2005,24(8):44-46. 被引量:16
  • 2张兴,戴莹,李争.一种时变非线性对象神经网络PID控制的仿真[J].合肥工业大学学报(自然科学版),2006,29(11):1375-1379. 被引量:2
  • 3周小莹,张根宝,马汇海.改进型模糊-Smith控制器在纸浆浓度控制系统中的应用[J].湖南造纸,2006(4):32-34. 被引量:1
  • 4Juang C F, Lin C C. A recurrent self-organizing neural fuzzy inference network. IEEE 'fransactions on Neural Networks, 1999, 10(4): 828-845.
  • 5Patan K. Artiflcial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes. Berlin: Springer, 2008. 78-112.
  • 6Boely N, Botez R M. New Approach for the identification and validation of a nonlinear F / A-1model by use of neural networks. IEEE Transactions on Neural Networks, 2010, 21(11): 1759-1765.
  • 7Nascimento C F, Oliveria A A, Goedtel A, Silva I N, Semi P J A. Neural network-based approach for identification of the harmonic content of a nonlinear load in a single-phase system. IEEE Latin America Transactions, 2010, 8(1): 65-73.
  • 8Zhao H Q, Zeng X P, He Z Y. Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network. IEEE Transactions on Neural Networks, 2011, 22(9): 1494-1507.
  • 9Barbounis T G, Theocharis J B. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing, 2006, 70(-9): 1525-1542.
  • 10Park D C. Prediction of MPEG video traffic over ATM networks using dynamic bilinear recurrent neural network. Applied Mathematics and Computation, 2008, 205(2): 648-657.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部