期刊文献+

SIFT特征匹配算法改进研究 被引量:18

Study on Improved SIFT Feature Matching Algorithm
下载PDF
导出
摘要 为了适应于景象匹配导航及制导等实时性要求较高的领域,对SIFT特征匹配算法进行改进,提出了基于D2OG特征点检测算子的改进的SIFT特征匹配算法。改进算法用D2OG金字塔的过零点检测代替DOG金字塔的极值点检测提取尺度不变特征点,巧妙简化高斯金字塔的结构,降低了算法复杂度和时间代价。以标准测试图库中大量不同几何和灰度畸变图像为基础的仿真实验表明,基于D2OG特征点检测算子的改进的SIFT特征匹配算法在保持原算法鲁棒性和精度的前提下,较大的提高了算法实时性。 An improved Scale Invariant Feature Transform algorithm was proposed based on D^2OG interest point detector for better real time performance in the application of scene matching navigation and so on. In order to detect the scale invariant interest point, a D^2OG pyramid is built and extreme detection in the DOG pyramid was replaced by zero detection in the D^2OG pyramid, which simplified the structure of DOG pyramid, so as to lower the complexity of algorithm, lessen the running time. Numerous experiments were carried out on standard testing images under various shooting conditions such as geometric distortion, illumination variation and so on. The result shows that the method has a big progress in the real time performance compared to the original one, with equally robustness and precision.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第11期2760-2763,共4页 Journal of System Simulation
关键词 尺度不变 特征尺度 SIFT DOG scale invariance feature scale scale invariant feature transform difference of Gaussian
  • 相关文献

参考文献7

  • 1David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 20.
  • 2Rahul Sukthankar, Yan Ke. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattem Recognition. USA: 1EEE, 2004, 1063-6919/04(2004 IEEE): 8.
  • 3刘立,彭复员,赵坤,万亚平.采用简化SIFT算法实现快速图像匹配[J].红外与激光工程,2008,37(1):181-184. 被引量:92
  • 4K Mikolajczyk, B Leibe, B Schiele. Local Features for Object Class Recognition [C]// Proc. IEEEE Int'l Conf. Computer Vision, 2005. USA: IEEE, 2005, vol.2: 1792-1799.
  • 5Babaud J, Witkin A P, Baudin Metal. Uniqueness of the Gaussian kernel for scale - space filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence: (S0162-8828), 1996, 8(1): 26-33.
  • 6T Lindeberg. Feature detection with automatic scale selection [J]. IJCV (S0920-5691), 1998, 30(2): 79-116.
  • 7Cordelia Schmid, Krystian Mikolajczyk. Scale & Affine Invariant Interest Point Detectors [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(01): 24.

二级参考文献10

  • 1王兆仲,周付根,刘志芳,杨建峰.一种高精度的图像匹配算法[J].红外与激光工程,2006,35(6):751-755. 被引量:9
  • 2MORAVEC H.Rover visual obstacle avoidance[C]//International Joint Conference on Artificial Intelligence,1981:785-790.
  • 3HARRIS C,STEPHENS M.Acombined corner and edge detector[C]//Fourth Alvey Vision Conference,1988:147-151.
  • 4SCHMID C,MOHR R.Local grayvalue invariants for image retrieval[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(5):530-534.
  • 5LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110
  • 6LOWE D G.Object recognition from local scale-invariant features[C]//International Conference on Computer Vision,1999:1150-1157
  • 7STEPHEN S,LOWE D G,LITTLE J J.Vision-based global localization and mapping for mobile robots[J].IEEE Transactions on Robotics,2005,21(3):364-375.
  • 8HELMER S,LOWE D G.Object recognition with many local features[C]//Workshop on Generative Model Based Vision 2004(GMBV,2004.
  • 9LINDEBERG T.Scale-space theory:A basic tool for analyzing structures at different scales[J].Journal of Applied Statistics,1994,21:224-270.
  • 10MORTENSEN E N,REESE L J,BARRETT W A..Computer vision and pattern recognition[J].IEEE Computer Society Conference,2005,1:184-190.

共引文献91

同被引文献156

引证文献18

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部