期刊文献+

语义信息集成中基于等价类的上下文转换 被引量:3

Context Conversion Based on Equivalence Class in Semantic Information Integration
下载PDF
导出
摘要 基于本体的语义信息集成能够解决分布数据源之间的模式级语义异构,而对于广泛存在的上下文语义异构却无法解决.为了解决上下文异构,提出一种将暗含的上下文语义进行形式化描述的方法,并对于上下文异构中的表示异构提出一种基于等价类的上下文转换方法,该方法避免了已有转换方法需要反复定义大量映射和进行复杂推导的缺点,具有灵活、简单、易于扩展的特点. Ontology based semantic information integration can solve the schematic heterogeneity among distributed data sources, but can not solve context heterogeneity which is widely existed. To solve context heterogeneity, firstly a context presentation to describe the implicit semantics formally is introduced. Then ,aiming at the represent heterogeneity, one of the context heterogeneities ,a flexible, simple and scalable context conversion method based on equivalence class is proposed. It avoids the shortcoming of existing method which need to define numerous mappings repeatedly and conduct complex reasoning.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第10期1937-1941,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(50305007)资助 湖北省教育厅科研项目(Q20101708)资助
关键词 上下文异构 表示异构 等价类 上下文转换 context heterogeneity present heterogeneity equivalence class context conversion
  • 相关文献

参考文献2

二级参考文献13

  • 1Wache H, Vogeh T, Visser U, et al. Ontology-based integration of information-a survey of existing approaches[C]. Proceedings of the IJCAI-01 Workshop on Ontologies and Information sharing, 2001,108-118.
  • 2Pavel Shvaiko, Jerome Euzenat. A survey of schema-based matching approaches[J]. Journal on Data Semantics, 2005,Ⅳ:146-171.
  • 3De Bruijn, Ding J, Arroyo Y, et al. Semantic information integration in the COG project[R]. DERI TR 2004-05-04, University of Nnsbruck, Austria, 2004.
  • 4Jos de Bruijn. Semantic information integration inside and across organizational boundaries[D]. Delft University of Technology, 2003.
  • 5Aykut Firat. Information integration using contextual knoeledge and ontology merging[D]. MIT Sloan School of Management, 2003.
  • 6Zhu H, Madnick S E, Context interchange as a scalable solution to interoperating amongst heterogeneous dynamic service[C]. 3rd Workshop on E-Business, 2004, 150-161.
  • 7Thomas Gannon, Stuart Madnick, Allen Mouhon, et al. Semantic information integration in the large: adaptability, extensibility, and scalability of the context mediation approach[R]. Technical Report CISL # 2005-04, MIT, Boston, May 2005.
  • 8WACHE H,VGELE T,VISSER U,et al.Ontology-based integration of information:a survey of existing approaches[C]// Proc of the IJCAI2001 Workshop on Ontologies and Information Sharing.New York:IEEE Press,2001:108-118.
  • 9PARK J,RAM S.Information systems interoperability:what lies beneath?[J].ACM Trans on Information Systems,2004,22(4):595-632.
  • 10AYKUT F.Information integration using contextual knowledge and ontology merging[D].Cambridge:Massachusetts Institute of Technology,2003.

共引文献7

同被引文献24

  • 1张良,佟俐鹃.异构数据库集成中数据传输问题的研究[J].计算机应用研究,2004,21(11):65-66. 被引量:19
  • 2孔令波,唐世渭,杨冬青,王腾蛟,高军.XML数据的查询技术[J].软件学报,2007,18(6):1400-1418. 被引量:72
  • 3贺敏,龚才春,张华平,程学旗.一种基于大规模语料的新词识别方法[J].计算机工程与应用,2007,43(21):157-159. 被引量:24
  • 4He M A, I.evy A Y, Knohlcek C, et al. Infmmaion irgrion[J]. IEEE Intenigent Systems and Their Applications, 1998, 13 (5) : 12 -24.
  • 5Zhuge H. Resource Space Model, Its Design Method and Applications [ J ]. Journal of Systems and Software, 2004, 72(1) :71 -81.
  • 6Zhuge H. Resource Space Grid: Model, Method and Platform[J]. Concurrency and Computation: Practice and Experience,2004.,16: 1385 - 1413.
  • 7Zhuge H, Yao E L, Xing Y P, et al. Extended Resource Space Model [J]. Future Generation Computer Systems,2005, 21:189 - 198.
  • 8汪培庄.随机徽分方程·统计物理学进展[M].北京:科学出版社,1981.
  • 9汪培庄 官野道夫.因素场与Fuzzy集的背景结构.模糊数学,1982,.
  • 10刘增良 刘有才.模糊逻辑与神经网络[M].北京:北京航空航天大学出版社,1996..

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部