期刊文献+

基于PageRank和系统调用的网页安全检测模型 被引量:2

Webpage Security Evaluation Model Based on PageRank and System Calls
下载PDF
导出
摘要 传统的基于病毒特征的网页检测方法已不能适应现在病毒产生快和变形多的特点,针对这个问题,本文提出基于Pag-eRank和系统调用的网页安全检测模型.该模型首先使用PageRank对网页进行快速分类,然后通过自动分析安全网页的系统调用参数来建立系统调用的正常访问模式,以此来检测可疑网页中病毒入侵的异常访问行为.最后实现了系统原型并进行性能测试,实验结果表明:本模型对典型恶意网页的检测率达到79.5%,效果理想,尤其在对新出现的网页病毒进行检测时明显优于传统方法. Traditional webpage evaluation methods based on the virus characteristics can not meet the features of rapid development and quick deformation, according to this problem, a new model based on PageRank and system calls was proposed to detect virus in webpage (PRSC). Firstly, PRSC classified the webpages by PageRank and through analyzing the arguments of system calls, and then automatically learnt and built the normal access mode to detect the abnormal access behaviors generated by malicious webpages. Finally, a prototype was implemented and the experiment results showed that it worked well and achieved 79.5 percent detection rate of typical malicious webpages and was clearly superior to the traditional methods when detecting the new web-based virus.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第10期2068-2072,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60673046 90715037)资助
关键词 系统调用 网页检测 访问模式 PAGERANK system calls webpage security detection access mode PageRank
  • 相关文献

参考文献12

  • 1Sophos Company. Sophos threat report July 2008 [ EB/OL ]. http ://www. sophos, com/security/whitepapers, March 2009.
  • 2McAfee SiteAdvisor. The working principle of SiteAdvisor[ EB/ OL]. http://www, siteadvisor, com/howitworks/index, html, March 2009.
  • 3Ikinci A, Holz T, Freiling F. Monkey-spider: detecting malicious websites with low-interaction honeyclients [ C ]. Proceedings of Sicherheit 2008, April 2008, 407-421.
  • 4Szor P. The art of computer virus research and defense [M]. Addison-Wesley Professional, 2005.
  • 5Hofmeyr S A, Forrest S, Somayaji A. Intrusion detection using sequence of system calls [ J]. Journal of Computer Security, 1998, 6 : 151-180.
  • 6Lane T, Brodley C E. Temporal sequence learning and data reduction for anomaly detection [J].ACM Transactions on Information and System Security, 1999,2( 3 ) :295-331.
  • 7Wespi A, Dacier M, Debar H. Intrusion detection using variablelength audit trail pattern [ C]. 3 rd RAID, October 2000 : 110-119.
  • 8Warrender C, Forrest S, Pearlmutter B. Detecting intrusion detections using system calls: alternative data models[ C]. Proc. IEEE Symp. Security and Privacy, 1999 : 133-145.
  • 9Brin S, Page L, Motwami R, et al. The pagerank citation ranking : bringing order to the web C]. Proceedings of ASIS98, 1998.
  • 10Google&265 [ EB/OL ]. http ://www. 265. com/, Mar. 2009.

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部