期刊文献+

基于集成图的保局投影算法

Graphs ensemble based locality preserving projection
下载PDF
导出
摘要 为了克服保局投影方法(locality preserving projection,LPP)对噪音敏感,有效性依赖于近邻图构造等缺点,提出一种基于集成图的保局投影方法(graphs ensemble based LPP,GELPP)。该方法先根据鲁棒统计原理定义出对噪声鲁棒的样本间相似性度量,再以该度量为基础构造多个近似的最大生成树;然后利用集成学习泛化能力强的优点来组合多个树为一个集成图;最后通过替换LPP的近邻图和相似性度量来进行保局投影。在高维人脸图像上的降维实验结果表明,该方法对噪声鲁棒,以及在集成图上降维的有效性。 Locality preserving projection(LPP) is sensitive to noise and its effectiveness relies much on the construction of neighborhood graph.To tackle these problems,a graphs ensemble based locality preserving projection(GELPP) method is proposed.GELPP first derives robust similarity between samples via robust statistic.Secondly,it constructs several approximate maximum spanning trees(MST) via this similarity,then combines these trees into an ensemble graph by the virtues of strong generalization ability of ensemble learning.Finally,it replaces similarity metric and neighborhood graph of LPP with robust similarity and this ensemble graph respectively.Experiments on high dimensional face databases prove not only GELPP’s robustness to noise and outliers,but also its effectiveness in dimensionality reduction on graphs ensemble.
作者 胡强 余国先
出处 《计算机工程与设计》 CSCD 北大核心 2010年第20期4463-4465,4470,共4页 Computer Engineering and Design
关键词 保局投影 鲁棒相似性 集成图 降维 噪声 locality preserving projection robust similarity graphs ensemble dimensionality reduction noise
  • 相关文献

参考文献12

  • 1He X F,Niyogi P.Locality preserving projections[C].Vancouver:17th Annual Conference of on Neural Information Processing System,2003:153-160.
  • 2Polikar R.Ensemble learning[EB/OL].http://www.scholarpedia.org/article/Ensemble_learning.
  • 3詹德川,周志华.基于集成的流形学习可视化[J].计算机研究与发展,2005,42(9):1533-1537. 被引量:24
  • 4曾宪华,罗四维,王娇,赵嘉莉.基于测地线距离的广义高斯型Laplacian特征映射[J].软件学报,2009,20(4):815-824. 被引量:9
  • 5Duda R O,Hart P E,Stork D G.Pattern classification 2ed[M].New York:John Wiley and Sons,2001.
  • 6Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15:1373-1396.
  • 7Yu G X,Peng H,Ma Q L,et al.Robust path based semi-supervised dimensionality reduction[C].Zhuhai/Macao,China:IEEE 6th International Conference on Information and Automation,2009.
  • 8Carreira-Perpinan M A,Zemel R S.Proximity graphs for clustering and manifold learning[C].Vancouver,Canada:Proceeding of Annual Conference.on Neural Information Processing System,2004.
  • 9Huber P J.Robust regression:Asymptotics,conjectures,and Monte Carlo[J].Annals Statistics,1973,1(5):799-821.
  • 10Chang H,Yeung D Y.Robust path-based spectral clustering[J].Pattern Recognition,2008,41:191-203.

二级参考文献9

  • 1詹德川,周志华.基于集成的流形学习可视化[J].计算机研究与发展,2005,42(9):1533-1537. 被引量:24
  • 2R.O. Duda, P. E. Hart, D. G. Stork. Pattern Classification.New York: John Wiley & Sons, 2001.
  • 3V.D. Silva, J. B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In: Advances of Neural Information Proceeding Systems 15. Cambridge, MA: MIT Press, 2002. 705~712.
  • 4J.B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction.Science, 2000, 90(5500): 2319~2323.
  • 5S. T. Roweis, K. S. Lawrance. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323~2326.
  • 6M. Belkin, P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2001,151(6): 1373~1396.
  • 7V.N. Vapnik. Statistical Learning Theory. New York: John Wiley & Sons, 1998.
  • 8T.G. Dietterich. Ensemble learning. In: The Handbook of Brain Theory and Neural Networks, 2nd Edition. Cambridge, MA:MIT Press, 2002.
  • 9M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum. The Isomap algorithm and topological stability. Science, 2002, 295(4): 7a.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部