期刊文献+

Fluorescence lifetime imaging of molecular rotors to map microviscosity in cells

Fluorescence lifetime imaging of molecular rotors to map microviscosity in cells
原文传递
导出
摘要 Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. Incubating cells with these dyes, we find a punctate and continuous distribution of the dye in cells. The viscosity value obtained in what appears to be endocytotic vesicles in living cells is around 100 times higher than that of water and of cellular cytoplasm.Time-resolved fluorescence anisotropy measurements also yield rotational correlation times consistent with large microviscosity values. In this way, we successfully develop a practical and versatile approach to map the microviscosity in cells based on imaging fluorescent molecular rotors. Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. Incubating cells with these dyes, we find a punctate and continuous distribution of the dye in cells. The viscosity value obtained in what appears to be endocytotic vesicles in living cells is around 100 times higher than that of water and of cellular cytoplasm.Time-resolved fluorescence anisotropy measurements also yield rotational correlation times consistent with large microviscosity values. In this way, we successfully develop a practical and versatile approach to map the microviscosity in cells based on imaging fluorescent molecular rotors.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第10期926-930,共5页 中国光学快报(英文版)
  • 相关文献

参考文献44

  • 1F. Festy, S. M. Ameer-Beg, T. Ng, and K. Suhling, Molecular Biosystems 3, 381 (2007).
  • 2F. S. Wouters, Contemporary Physics 47, 239 (2006).
  • 3E. A. Jares-Erijman and T. M. Jovin, Nature Biotechnol. 21, 1387 (2003).
  • 4H. Wallrabe and A. Periasamy, Current Opinion in Biotechnol. 16, 19 (2005).
  • 5D. K. Bird, K. M. Agg, N. W. Barnett, and T. A. Smith, J. Microsc.-Oxford 226, 18 (2007).
  • 6T. Ni and L. A. Melton, Appl. Spectrosc. 50, 1112 (1996).
  • 7G. Liaugaudas, A. T. Collins, K. Suhling, G. Davies, and R. Heintzmann, J. Phys. Condensed Matter 21, 364210 (2009).
  • 8R. K. P. Benninger, O. Hofmann, J. McGinty, J. Requejo- Isidro, I. Munro, M. A. A. Neil, A. J. deMello, and P. M. W. French, Opt. Express 13, 6275 (2005).
  • 9A. D. Elder, S. M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher, and C. F. Kaminski, Opt. Express 14, 5456 (2006).
  • 10D. Comelii, G. Valentini, R. Cubeddu, and L. Toniolo, Appl. Spectrosc. 59, 1174 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部