摘要
We study the uptake and distribution of transferrin (Tf)-conjugated CdSe/CdS/ZnS quantum dots (QDs) in single living HeLa cells with both fluorescence confocal microscopy and three-dimensional (3D) reconstruction technique. By increasing the co-incubation time or the dosage of QDs-Tf, we find that the uptake of QDs-Tf bioconjugates in the cells increases correspondingly, but with different uptake rates. Additionally, the distribution of QDs-Tf, in single live HeLa cells is time dependent. To our knowledge, this is the first study on quantitatively analyzing the uptake and distribution of bioconjugated QDs in single living cells. Such QDs nanoplatform can be further modified for developing biomedical evaluation tool in cancer diagnosis and targeted drug delivery.
We study the uptake and distribution of transferrin (Tf)-conjugated CdSe/CdS/ZnS quantum dots (QDs) in single living HeLa cells with both fluorescence confocal microscopy and three-dimensional (3D) reconstruction technique. By increasing the co-incubation time or the dosage of QDs-Tf, we find that the uptake of QDs-Tf bioconjugates in the cells increases correspondingly, but with different uptake rates. Additionally, the distribution of QDs-Tf, in single live HeLa cells is time dependent. To our knowledge, this is the first study on quantitatively analyzing the uptake and distribution of bioconjugated QDs in single living cells. Such QDs nanoplatform can be further modified for developing biomedical evaluation tool in cancer diagnosis and targeted drug delivery.
基金
supported by the National Natural Science Foundation of China (Nos. 30900335, 60878053, and60627003)
the Guangdong Province Science Foundation(No. 2008078)
the Natural Science Foundation of Shen-zhen University, and the Start-Up Grant from Nanyang Technological University