期刊文献+

几种图像变换算法性能比较 被引量:5

Comparion of Servral Image Transform
下载PDF
导出
摘要 为寻找提高图像压缩算法性能的途径,比较了二维DCT(Discrete Cosine Transform)变换,二维张量积小波变换以及最新的几何小波的变换特点及实用效果。针对同一图像采用不同的几何小波进行分解,保留相同个数的显著系数进行图像重建,以比较各种小波基的稀疏表示能力。结果显示,在高压缩比条件下,Ban-delet和DCT变换更加有效,而在高质量条件下,小波变换依旧是最有效的工具。 In order to find a way to improve the performance of image compression,the characteristic and effect of 2D-DCT ( Discrete Cosine Transform) ,two-dimensional tensor product wavelet,and the latest geometrical wavelet are compared. The same image is decomposed with different geometrical wavelet and then reconstructed with the same number of significant coefficients,thus the sparse representation capability of wavelet can be compared,the result shows that Bandelet and DCT are more efficient when require high compression ratio,while wavelet is still the most efficient tool when require high image quality.
出处 《吉林大学学报(信息科学版)》 CAS 2010年第5期439-444,共6页 Journal of Jilin University(Information Science Edition)
关键词 图像压缩 小波 楔波 曲波 边缘波 BANDELET image compression wavelet wedgelets curvelets contourlets bandelet
  • 相关文献

参考文献12

  • 1CANDES E J.Ridgelets:Theory and Applications[D].California,USA:Stanford University,1998.
  • 2CANDES E J.Monoscale Ridgelets for the Representation of Images with Edges[R].Califorinia,USA:Stanford University Press,1999.
  • 3CANDES J,DONOHO D L.Curvelets[R].Califorinia,USA:Stanford University Press,1999.
  • 4PENNEC E L,MALLAT S.Image Compression with Geometrical Wavelets[C]∥Proceedings of ICIP2000.Vancouver,Canada:[s.n.],2000:66l-664.
  • 5DO M N,VETTERLI M.Contourlets:A New Directional Multiresolution Image Representation[C/OL]∥ Proceedings of Conference Record of the Thirty-Sixth Asilomar Conference on Signals Systems and Computers.2002,1:497-501[2010-02].http://ieeexplore.ieee.org/cxpls/abs_all.jsp?arnumber=1197232.
  • 6焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 7GABRIEL P,MALLAT S.Discrete Bandelets with Geometric Orthogonal Filters[C]∥ IEEE International Conference on Image Procss.[s.l.]:IEEE,2005,1:I-65-73.
  • 8DONOHO D,HUO Xiao-ming.Beamlets and Multiscale Image Analysis[R].California,USA:Stanford Uniressity,2001.
  • 9WAKIN M B,ROMBERG J K,CHOI H,et al.Image Compression Using an Efficient Edge Cartoon + Texture Model[C]∥ IEEE Data Compression Conference-DCC '02.Snowbird,Utah:IEEE,2002:43-52.
  • 10AHMED N,NATARAJAN T,RAO K P.Discrete Cosine Transform[J].IEEE Trans Computers,1974,C-123:90-93.

二级参考文献58

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献226

同被引文献38

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部