期刊文献+

医用β-Ti30Nb13Zr0.5Fe合金的热变形行为 被引量:6

Hot deformation behaviors of biomedical β-Ti30Nb13Zr0.5Fe alloy
下载PDF
导出
摘要 利用热模拟实验机对Ti30Nb13Zr0.5Fe(质量分数,%)医用钛合金在温度700~850℃、变形速率10^(-3)~10 s^(-1)范围内进行等温热压缩试验,观察变形后钛合金的显微组织,并根据动力学分析确定合金β相区热变形方程、应力指数n和激活能Q。结果表明:温度变化不改变σ—ε曲线特征;应变速率对变形行为的影响较大,(?)为1~10 s^(-1)时,出现流变不稳定性;(?)为10^(-2)~1 s^(-1)时,组织发生β相再结晶和动态回复;当θ>800℃、(?)<10^(-2) s^(-1)时,组织发生β相连续再结晶,导致晶粒粗化;合金β相区变形应力指数n和激活能Q分别为4.5和195kJ/mol;综合考虑可热加工性和组织细化因素,温度为700~800℃、应变速率为10^(-3)~10^(-1)s^(-1)是良性热加工区域。 The hot deformation behaviors of Ti30Nbl3Zr0.5Fe (mass fraction, %) alloy were studied by thermal-simulator in the temperature range of 700-850 ℃ and strain rate range of 10^-3-10 s^-1. The hot deformation equation, stress exponential n and deformation activation energy Q were established according to the dynamical analysis. The microstructures were observed by optical microscopy. The results indicate that the variation of deformation temperature doesn't change the characteristics of true stress--strain curves, but the variation of strain rate has crucial effect on the deformation behaviors. The instable flow happens at strain rate of 1-10 s^-1, the dynamic recrystallization and dynamic recovery of β phase occur at strain rate of 10^-2-1 s^-1. And the continual recrystallization and grain coarsening occur at strain rate less than 10^-2 s^-1 and temperature higher than 800 ℃. The stress exponential n and deformation activation energy Q of fl phase are 4.5 and 195 kJ/mol, respectively. Considering workability and microstructure refining, the optimum conditions of hot deformation for Ti30Nbl3Zr0.5Fe alloy are the temperature range of 700-800 ℃ and strain rate range of 10^-3-10^-1 s^-1.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2010年第B10期357-364,共8页 The Chinese Journal of Nonferrous Metals
关键词 医用钛合金 热压缩 流动应力 显微组织 变形机制 biomedical titanium alloy heat deformation flow stress microstructure deformation mechanism
  • 相关文献

参考文献17

  • 1NIINOMI M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr [J]. Biomaterials, 2003, 24: 2673-2683.
  • 2EISENBARTH E, VELTEN D. Biocompatibility of beta- stabilizing elements of titanium alloys [J]. Biomaterials, 2004, 25: 5705-5713.
  • 3NIINOMI M. Recent metallic materials for biomedical applications [J]. Metal Mater Trans A, 2002, 33A: 477-486.
  • 4NIINOMI M. Mechanical properties of biomedical titanium alloys [J]. Materials Science and Engineering A, 1998, 243: 31-236.
  • 5周宇,杨贤金,崔振铎.新型医用β-钛合金的研究现状及发展趋势[J].金属热处理,2005,30(1):47-50. 被引量:40
  • 6郭爱红,崔文芳,刘向宏,张丰收,周廉.新型医用TiNbZrFe合金的组织和力学性能[J].材料与冶金学报,2008,7(4):288-292. 被引量:4
  • 7SESHACHARYULU T, MEDEIROS S C, FRAZIER W G. Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: materials modeling considerations [J]. Mater Sci and Eng A, 2000, A284:184-194.
  • 8彭益群.热变形参数对Ti-10V-2Fe-3Al合金组织与流变应力的影响研究[D].北京:北京航空航天大学,1989:50-52.
  • 9MONTHEILLET E DAJNO D. Hot deformation of the high strength beta-cez titanium alloy titanium'92 science and technology [C]//FROES F H, CAPLAN I L, et al. San Diego: The Minerals, Metals & Materials Society, 1993: 1347-1349.
  • 10叶文君,脱祥明,王世洪.β21S钛合金热压缩变形行为[J].稀有金属,2002,26(1):23-27. 被引量:20

二级参考文献84

共引文献223

同被引文献61

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部