期刊文献+

耦合映射的混沌广义同步 被引量:4

Generalized Synchronization in Two Coupled Logistic Maps
下载PDF
导出
摘要 研究了非线性耦合下两个参数不同的Logistic映射的混沌广义同步问题,指出采用适当的耦合方式两个处于混沌状态的Logistic映射不仅可以满足稳定的线性关系还可以满足稳定的非线性关系并给出了严格的解析证明.这是一种完全不依赖于数值计算的新方法.本文还给出了实现两个系统混沌广义同步耦合强度需取的范围以及两个系统保持稳定的线性关系和稳定的非线性关系的具体函数形式. Interest in synchronization of chaos has increased because of its possible relevance to secure communication. Recently, papers discussing a more general idea of synchronization have appeared in the literature. We investigate chaos synchronization of nonidentical coupled maps. It is shown that two coupled Logistic maps at different parameter values may not only satisfy stable linear relation but also nonlinear relation with proper coupled fashion. The strict analytical proof about it is proposed. This is a new method that don't rely on numerical method completely. We also give the range of the coefficient of coupling in generalized synchronization and the functions of the stable linear relation and the stable nonlinear relation.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 1999年第3期12-15,共4页 Journal of Beijing University of Posts and Telecommunications
关键词 混沌 广义同步 耦合 映射 chaos generalized synchronization couple
  • 相关文献

参考文献4

  • 1郝柏林.从抛物线谈起--混沌动力学引论[M].上海:上海科技教育出版社,1995..
  • 2Yang Junzhong,Phys Rev Lett,1998年,80卷,3期,496页
  • 3郝柏林,从抛物线谈起.混沌动力学引论,1995年,24页
  • 4Hu Gang,Phys Rev Lett,1994年,72卷,1期,68页

共引文献7

同被引文献21

  • 1廉士国,王执铨.Standard映射及其三维扩展在多媒体加密中的应用[J].东南大学学报(自然科学版),2003,33(z1):90-94. 被引量:5
  • 2费春国,韩正之,唐厚君,魏国.自适应混合混沌神经网络及其在TSP中的应用[J].系统仿真学报,2006,18(12):3459-3462. 被引量:11
  • 3G Perez, H A Cerdeira. Extracting Messages Masked by Chaos [J]. Phys. Rev. Lett. (S0031-9007), 1995, 74(11): 1970-1973.
  • 4T Yang, B Y Lin, M Y Chun. Application of Neural Networks to Unmasking Chaotic Secure Communication [J]. Physica D (S0167-2789), 1998, 124(1): 248-257.
  • 5E M Shahverdiev, S Sivaprakasam, K A Shore. Lag Synchronization in Time-Delayed Systems [J]. Physics Letters A (S0375-9601), 2002, 292(6): 320-324.
  • 6K Gopalsamy. Stability and Oscillations in Delay Differential Equations of Population Dynamics [M]. The Netherlands: Kluwer Academic Publishers, 1992.
  • 7Chao-Jung Cheng, The-Lu Liao, Chi-Chuan Hwang. Exponential Synchronization of a Class of Chaotic Neural Networks [J]. Chaos Solitons & Fractals (S0960-0779), 2005, 24(1): 197-206.
  • 8Tang D Y,Phys Rev A,1998年,57卷,5期,5247页
  • 9Yang S S,Chaos Solitons Fractals,1998年,9卷,10期,1703页
  • 10Ott E, Grebogi C, York J A. Controlling chaos [J]. Phy Rev Lett, 1990, 64:1196

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部