期刊文献+

基于FCM-SCEMUA的水文模型参数不确定性估计方法 被引量:6

Uncertainty estimation of the hydrological model based on FCM and SCEMUA
下载PDF
导出
摘要 引入模糊C-均值聚类(FCM)方法对水文过程进行分类,结合SCEMUA方法,建立了基于FCM-SCEMUA的水文模型参数不确定性分析方法。选择南水北调水源区所在的汉江上游的江口流域,以新安江模型为例进行了实例研究。结果表明,FCM-SCEMUA方法通过对不同分类的似然函数分别设置阈值,在阈值同样为70%的情况下,所得到的有效参数组比通过SCEMUA方法得到的减少了64.8%的不合理参数组。所推求的参数后验分布更能够朝着高概率密度区进化,推导出更加合理的水文模型参数的后验分布,从而得到更加合理的预测区间,有效地减少了水文模拟与预测的不确定性。 An uncertainty estimation approach for hydrological model based on the (FCM Fuzzy C-Means Clustering Algorithm) and SCEMUA (Shuffled Complex Evolution Metropolis Algorithm) methods is proposed,in which the FCM method is used to classify the hydrological processes.The Jiangkou Catchment located in the upper Hanjiang River Basin is adopted as a typical basin,and the Xinanjiang model is used as a typical model,to carryout the case study.The results show that for the number of behavioral parameter sets,unreasonable parameter sets obtained by FCM-SCEMUA method,which sets the thresholds of likelihood function for different classes,decreases 64.8% as compared with that obtained by SCEMUA method under the same threshold 70%.The parameter posterior distribution obtained by FCM-SCEMUA method is found to evolve efficiently to a higher probability density (HPD) region,so as to obtain more reasonable parameter posterior distribution of the hydrological model.The FCM-SCEMUA method can be used to derive more accurate prediction bounds and to effectively reduce the uncertainty in hydrological modeling and forecasting.
出处 《水利学报》 EI CSCD 北大核心 2010年第10期1186-1192,共7页 Journal of Hydraulic Engineering
基金 国家自然科学基金重点项目(50839005) 国家自然科学基金青年科学项目(50809078) 中国水利水电科学研究院开放基金项目(IWHR02009003) 中央高校基本科研业务费专项资金资助项目(3161395)
关键词 水文模型 不确定性 FCM-SCEMUA 区间宽度 Hydrological model uncertainty FCM-SCEMUA interval width
  • 相关文献

参考文献9

  • 1Beven K, Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology [J].Journal of Hydrology, 2001,249 : 11 - 29.
  • 2Blasone R S, Vrugt J A. Generalized likelihood uncertainty estimation (GLUE)using adaptive Markov Chain Mote Carlo sampling [J]. Advances in Water Resources, 2008, 31 : 630-648 .
  • 3卫晓婧,熊立华,万民,刘攀.融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用[J].水利学报,2009,39(4):464-473. 被引量:36
  • 4林凯荣,陈晓宏,江涛.基于Copula-Glue的水文模型参数的不确定性[J].中山大学学报(自然科学版),2009,48(3):109-115. 被引量:12
  • 5Sivapalan M, Takeuchi K, Franks S W, et al . IAHS Decade on Predictions in Ungauged Basins (PUB) , 2003-2012 : Shaping an exciting future for the hydrological sciences[J] . Hydrological Sciences Journal, 2003, 48 (6) : 857-880.
  • 6Gupta V K, Sorooshian S. The relationship between data and the precision of estimate parameters [J] . Journal of Hydrology, 1985, 81: 55-77.
  • 7汪丽娜,陈晓宏,李粤安,林凯荣.基于人工鱼群算法和模糊C-均值聚类的洪水分类方法[J].水利学报,2009,39(6):743-748. 被引量:30
  • 8Xie, X L, Beni, G. A validity measure for fuzzy clustering[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8) : 841-847.
  • 9Duan Q, Gupta V K, Sorooshian S. Effective and efficient global optimization for conceptual rainfall2runoff models [J] . Water Resources Research, 1992, 28(4) : 1015-1031 .

二级参考文献36

共引文献70

同被引文献79

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部