期刊文献+

基于蚁群算法的多参数模糊评判的路由算法 被引量:3

Multi-parameter Fuzzy Judge Routing Algorithm Based on Ant Colony Algorithm
下载PDF
导出
摘要 随着互联网络的快速发展和网络用户数量的不断攀升,用户对网络服务质量和网络性能等方面的需求也不断增强。智能路由选择问题正成为网络通信领域中的一个热点问题,本文提出了基于蚁群算法的多路由约束参数模糊评判的路由算法,该路由算法不但能够综合利用多个路由参数的组合优化作用求解最优路由,而且,又能充分利用蚁群算法的良好特性。该路由算法能够有效地解决用户对网络服务、网络性能等方面的需求问题。 With the rapid development of internet and the rising number of internet users,the users' needs about network service quality and network performance are also rapidly growing. Intelligent routing problem is becoming a hot issue in the field of network communications. In this paper,Multi-parameter fuzzy judge routing algorithm based on ant colony algorithm is proposed,the algorithm not only can solve optimal routing problem,but also can fully utilize the good characteristics of the ant colony algorithm. The routing algorithm can effectively solve the users' needs about network services,network performance.
作者 刘伟 史岚
出处 《微计算机应用》 2010年第10期14-19,共6页 Microcomputer Applications
关键词 蚁群算法 模糊评判 路由算法 路由参数 ant colony algorithm fuzzy judge routing algorithm routing parameter
  • 相关文献

参考文献5

  • 1Dorigo M, GambardeUa L M. Ant Colonies for the Traveling Salesman Problem [ J ], Bio- system, 1997,43 (2) :73 -81.
  • 2Z. Wang, J. Crowcroft. Quality of service routing for supporting multimedia applications [ J ]. IEEE J. SAC, 1996, 14 (7) :1228 - 1234.
  • 3G. N. Rouskas and I. Baldine. Muhicast Routing with end - to - end delay and delay variation constraints [ J]. IEEE Journal on Selected Areas in Commu. , 1997, 15 (3) :346 -356.
  • 4夏鸿斌,须文波,刘渊.负载平衡路由:一种新的ACO路由策略[J].计算机应用研究,2009,26(7):2504-2507. 被引量:2
  • 5杨纶标,高英仪.模糊数学原理与应用[M].广州:华南理工大学出版社,2005.41-48.

二级参考文献9

  • 1BERTSEKAS D, GALLAGER R. Data networks[ M]. Upper Saddle River, New Jersey: Prentice-Hall Inc, 1992:48-49.
  • 2DORIGO M, CARO G D, GAMBARDELLA L M. Ant algorithms for discrete optimization[ J]. Artificial lifo, 1999, 5(2) : 137- 172.
  • 3ZHOU Song-nian, FERRARI D. An experimental study of load-balancing performance,CSD-87-336[R]. Berkeley: University of California, 1987.
  • 4KARA M. Using dynamic load balancing in distributed information systems, Report 94.18[ R]. Leeds:School of Computer,University of Leeds, 1994.
  • 5SALEHI M A, DELDARI H. Grid load balancing using an echo system of intelligent ants[ C ]//Proc of the 24th lASTED International Conference on Parallel and Distributed Computing and Networks. Innsbruck, Austria: ACTA Press, 2006 : 47- 52.
  • 6KWANG M S, WENG Hong-sun. Ant colony optimization for routing and load-balancing:survey and new directions[ J]. IEEE Trans on Systems, Man and Cybernetics,2003:560-572.
  • 7VARELA N, SINCLAIR M C. Ant colony optimization for virtualwavelength-path routing and wave length allocation [ C ]//Proc of Congress on Evolutionary Computation. Washington DC: IEEE Press, 1999: 1809- 1816.
  • 8SCHOONDERWOERD R, HOLLAND O, BRUTEN J. et al. Antbased load balancing in telecommunication networks [J]. Adaptive Behavior, 1996,5 (2) : 169- 207.
  • 9CARO G D, DORIGO M. AntNet : distributed stigmergetic control for communications networks[ J ]. Journal of Artificial Intelligence Research, 1998,9:317- 365.

共引文献7

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部