期刊文献+

基于PDAG算法的工业机器人轨迹跟踪 被引量:5

PDAG Algorithm Based Trajectory Tracking for Industrial Robots
下载PDF
导出
摘要 根据工业机器人执行的作业任务具有重复性的特点,提出一种PDAG算法。将学习矩阵作用于误差数据建立PDAG算法的数学模型,从理论上证明了PDAG算法的稳定性和收敛性。将重力补偿作为前馈控制量,用以消除动态过程中关节重力的影响,提高迭代学习控制的收敛速度和轨迹跟踪精度。进行了PDAG算法仿真,结果表明,PDAG算法的控制性能与传统的无补偿算法相比,迭代学习后轨迹跟踪误差趋于稳定,各关节最大位置跟踪误差和平均跟踪误差均比没有重力补偿时降低50%,且比有重力补偿的PD算法精度提高最大达81%。实验证明提出的PDAG算法可以获得更高精度的跟踪效果。 A PDAG algorithm to form the feedback controller was proposed according to the characteristics that industrial robots often executed tasks repeatedly.The establishment of mathematical model of PDAG algorithm,with the application of a learning matrix to the error data,proved the stability and convergence of PDAG algorithm in theory.The gravity compensation was regarded as feed -forward control quantity to eliminate the effect of articulation gravity in dynamic process,to improve the convergence rate and the trajectory tracking precision of iterative learning control,and to conduct PDAG algorithm simulation as well.The experimental results show that with the PDAG algorithm control performance,compared to traditional non-compensation algorithm,the trajectory tracking error tends to be stable after iterative learning.Both the maximum positioning tracking error and the average tracking error of each articulation drops by 0.5time compared to the condition without gravity compensation.Compared to PD algorithm with gravity compensation,the PDAG algorithm increases accuracy by max 81%,which means that the proposed PDAG algorithm is capable of achieving trajectory tracking effect with higher precision.
机构地区 莆田学院 浙江大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2010年第19期2302-2307,共6页 China Mechanical Engineering
基金 福建省教育厅资助项目(JB07154) 福建省高等学校新世纪优秀人才支持计划资助项目
关键词 工业机器人 轨迹跟踪 自适应控制 迭代学习 PDAG算法 重力补偿 industrial robot trajectory tracking adaptive control iterative learning the PDAG algorithm gravity compensation
  • 相关文献

参考文献8

二级参考文献43

  • 1于艳秋,廖启征.基于有理数运算的一般6R机器人位置逆解算法[J].机械工程学报,2005,41(3):229-233. 被引量:17
  • 2李英,彭光正,范伟.模糊PID控制在气动人工肌肉位置控制中的应用[J].液压与气动,2005,29(4):31-33. 被引量:5
  • 3王卫忠,赵杰,吕常青,蔡鹤皋.基于旋量和臂形标志的机器人运动学逆解计算[J].机械与电子,2006,24(4):53-56. 被引量:5
  • 4WHITE G C, XU Y. An active vertical-direction gravity compensation system[J]. IEEE Transactions on Instrumentation and Measurment, 1994,43 (6) : 12.
  • 5SATO Y, EJIRI A, IIDA Y, et al. Micro-G emulation system using constant-tension suspension for a space manipulator[C]//Proceedings of the 1991 IEEE International Conference on Robotics and Automation Sacramento. California: [ s. n. ], 1991.
  • 6ARIMOIO S, KAWAMURA S, MIYASKI F. Bettering operation of robots by learning [J]. J of nobotic Systems, 1984,1(2):123-140.
  • 7JANG T, CHOI C H, AHN H S. Iterative learning control in feedback systems [J]. Automatica, 1995,31(2):243-248.
  • 8LEE J H, LEE K S, KIM W C. Model-based iterative learning control with a quadratic criterion for time-varying linear systems [ J ].Automatica, 2000,36(4):641-657.
  • 9PARK K H, KUC T Y, LEE J S. Adaptive learning control of uncertain robotic systems [J]. Int J Control, 1996,65(5) :725 - 744.
  • 10SEO W G, PARK K H, LEE J S. Intelligent learning control for ac lass of nonlinear dynamics system [ J]. IEE Proc -- Control Theory and Applications, 1999,146(2):165- 170.

共引文献87

同被引文献34

  • 1刘磊,向平,王永骥,俞辉.非完整约束下的轮式移动机器人轨迹跟踪[J].清华大学学报(自然科学版),2007,47(z2):1884-1889. 被引量:20
  • 2张益军,朱庆保,田恩刚.实现CPG模型的细胞神经网络的分支分析方法[J].控制理论与应用,2006,23(3):362-366. 被引量:4
  • 3李思桥,张玉茹,曹永刚,戴晓伟.力觉交互设备的重力补偿实验研究[J].机械设计与研究,2007,23(1):95-97. 被引量:7
  • 4Ikeura R, Inooka H. Variable Impedance Control of a Robot for Cooperation with a Human[C]//Pro- ceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1995:3097-3102.
  • 5Hirata Y, Takagi T, Kosuge K, et al. Motion Con trol of Multiple DR Helpers Transporting a Single Object in Cooperation with a Human Based on Map Information[C]//Proceedings of the IEEE Interana- tional Conference on Robotics and Automation. Pis- cataway, NJ, USA: IEEE, 2002:995-1000.
  • 6Marder E, Bucher D. Central Pattern Generators and the Control of Rhythmic Movements[J] Cur- rent Biology, 2001, 11(23): 986-996.
  • 7Kotosaka S, Schaal S. A Model of the Neuro- Mus- culo-Skeletal System for Human Locomotion[J]. Biological Cybernetics, 1995,73(2) : 113-121.
  • 8Taga G. Synchronized Robot Motion by Neural Os- cillators[J]. Journal of the Robotics Society of Ja- pan, 2001, 19(1): 116-123.
  • 9Okada M, Tatani K, Nakamura, Y. Polynomial De- sign of the Nonlinear Dynamics for the Brain-like Infor- mation Processing of Whole Body Motion[C]//Pro- ceedings of the IEEE International Conference on Ro- botics and Automation. Washington D. C., USA: IEEE, 2002: 1410-1415.
  • 10Okada M, Nakamura D, Nakamura Y. Design of Dynamics-based Information Processing System for Humanoid Motion Generation [C]//Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Birateral Para- digms of Human and Humanoid. Las Vegas, Ne- vada, USA: IEEE, 2003: 126-142.

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部