期刊文献+

利用压电层提高变截面Beck杆的稳定性研究 被引量:1

Improving Dynamic Stability of Varying Cross-section Beck’s Column with Piezoelectric Layers
下载PDF
导出
摘要 对一定边界条件下的变截面Beck杆,通过在其表面特定位置粘贴压电片,并施加电场于压电片来提高其稳定性。建立了含端部集中质量的压电层合变截面Beck杆的计算模型,导出分段表示的运动微分方程。利用微分求积法分析了压电片几何物理参数对Beck杆的动态稳定性的影响。研究结果表明,粘贴压电片可以有效提高Beck杆的稳定性。 To improve the stability of a varying cross-section Beck’s column with certain bounda-ry conditions,an external voltage was applied on the piezoelectric layers bonded on the surfaces of Beck’s column.The mathematical model of the piezoelectric composite varying cross-section Beck’s column was established and the differential equations of motion were derived.With DQ method,the effect of geometrical and physical parameters of piezoelectric layers on the stability of varying cross-section Beck’s column were studied.Stability of Beck’s column can be improved by the piezoelectric layers.
作者 杨峰 王忠民
出处 《中国机械工程》 EI CAS CSCD 北大核心 2010年第19期2359-2363,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(10872163) 陕西省教育厅科学研究基金资助项目(08JK394)
关键词 变截面 Beck杆 压电片 稳定性 微分求积法 varying cross-section Beck’s column piezoelectric layers stability differential quadrature(DQ)method
  • 相关文献

参考文献13

  • 1Beck M. Die Knicklast des Einseitig Eingespannten Tangential Gedrtickten Stabes[J]. J Angew Mathimatics & Physics, 1952, 3(1): 476-477.
  • 2Bolotin V V. Non--conservative Problems of the Theory of Elastic Stability[M]. New York:Macmillan, 1963.
  • 3Koiter W T. Unrealistic Follower Forces[J]. Journal of Sound and Vibration, 1996,194(1):636-638.
  • 4Sugiyama Y, Langthjem M A, Ryu B J. Realistic Follower Forces [J]. Journal of Sound and Vibration, 1999, 225(4) :779-782.
  • 5Elishakoff I. Controversy Associated with the So-called" Follower Forces": Critical Overview[J].Applied Mechenical Review, 2005,58(1): 117-142.
  • 6Hauger W, Vetter K. Influence of an Elastic Foundation on the Stability of a Tangentially Loaded Column[J]. Journal of Sound and Vibration, 1976,47 (1) : 296-299.
  • 7Atanackvic T M, Weticanin L. Dynamics of Inplane Motion of a Robot Arm[M]//Acar M, Makra J,Penney E eds. Mechatronics-the Basis for New Intdustrial Development. Boston: Computational Mechanics Publication, 1994: 147-152.
  • 8Matsude H, Sakiyama T, Morita C. Variable Cross Sectional Beck' s Column Subjected to Non-conservative Load[J]. Zeitsehrift fur Angwandte Mathematik und Mechanik (ZAMM), 1993,73(1) : 383- 385.
  • 9Kounadis A N. The Existence of Regions of Divergence Instability for Non--conservative Systems under Follower Forces [J].Int. Journal of Solids Structure, 1983, 19(1): 725-733.
  • 10Irie T, Yamada G, Takahashi I. Vibration and Stability of a Non- uniform Timoshenko Beam Subjected to a Follower Force[J]. Journal of Sound and Vibration, 1980,70(1): 503-512.

同被引文献19

  • 1张瑞平,李会侠,穆静.可展开为幂级数的变截面弹性直杆的纵向自由振动分析[J].机械科学与技术,2000,19(z1):61-62. 被引量:3
  • 2侯祥林,范炜,贾连光.变截面压杆临界载荷的迭代算法[J].哈尔滨工业大学学报,2011,43(S1):237-240. 被引量:14
  • 3Malashin A A. Problems of boundary control over the transverse-longitudinal vibrations of strings[J]. Doklady Physics, 2011, 56(9): 502-505.
  • 4Fedotov I A, Polyanin A D, Shatalov Y M, et al. Longitudinal vibrations of a Rayleigh-Bishop rod[J]. Doklady Physics, 2010, 55(12): 609-614.
  • 5Kuleshov A A. Mixed problems for the equation of longitudinal vibrations of a heterogeneous rod and for the equation of transverse vibrations of a heterogeneous string consisting of two segments with different densities and elasticities[J]. Doklady Mathematics, 2012, 85(1): 98-101.
  • 6Kuleshov A A. Mixed problems for the equation of longitudinal vibrations of a heterogeneous rod with a free or fixed right end consisting of two segments with different densities and elasticities[J]. Doklady Mathematics, 2012, 85(1): 80-82.
  • 7II'in V A. Longitudinal vibrations of a rod consisting of two segments with different densities and elasticity coefficients but with identical travel times on each segment[J]. Doklady Mathematics, 2009, 80(3): 910-913.
  • 8Zehetner C. Compensation of torsional vibrations in rods by piezoelectric actuation[J]. Aeta Mechanica, 2009, 207(1): 121-133.
  • 9Ekelehik V S. Application of a refined theory of torsional vibrations to the calculation of natural frequencies and damping coefficients of orthotropic composite cantilever rods[J]. Mechanics of Composite Materials, 2010, 46(1): 29-34.
  • 10Brovko G L, Kuzichev S A. Stability of forced torsional vibrations of an equipped rod[J]. Moscow University Mechanics Bulletin, 2010, 65(1): 6-10.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部