期刊文献+

Low-complexity method for DOA estimation based on ESPRIT 被引量:6

Low-complexity method for DOA estimation based on ESPRIT
下载PDF
导出
摘要 A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method. A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期729-733,共5页 系统工程与电子技术(英文版)
关键词 direction of arrival(DOA) multistage Wiener filter(MSWF) conjugate gradient(CG) estimation signal parameters via rotational invariance technique(ESPRIT) eigenvalue decomposition(EVD). direction of arrival(DOA) multistage Wiener filter(MSWF) conjugate gradient(CG) estimation signal parameters via rotational invariance technique(ESPRIT) eigenvalue decomposition(EVD).
  • 相关文献

参考文献1

二级参考文献16

  • 1Farina A,Gini F,Greco M.DOA estimation by exploiting the amplitude modulation induced by antenna scanning.IEEE Trans.on Aerospace and Electronic Systems,2002,38(4):1276-1286.
  • 2Sarkar T K,Wang H,Park S,et al.A deterministic least squares approach to space-time adaptive processing (STAP).IEEE Trans.on Antennas and Propagation,2001,49(1):138-143.
  • 3Sarkar T K,Jinwan K,et al.A pragmatic approach to adaptive antennas.IEEE Antennas and Propagation Magazine,2000,42(2):39-55.
  • 4Raviraj S,Sarkar T K.Compensation for the effects of mutual coupling on direct data domain adaptive algorithms.IEEE Trans.on Antennas and Propagation,2000,48(1):86-94.
  • 5Choi W,Sarkar T K.Minimum nor property for the sum of adaptive weights for a direct data domain least squares algorithm.IEEE Trans.on Antennas and Propagation,2006,54(3):1045-1050.
  • 6Kim K,Sarker T K,Wang H,et al.Direction of arrival estimation based on temporal and spatial processing using a direct data domain (D3) approach.IEEE Trans.onAntennas and Propagat/on,2004,52(2):523-541.
  • 7Sarkar T K,Hong Wang,Park S.A deterministic leastsquares approach to space-time adaptive processing.IEEE Trans.on Antennas and Propagation,2001,49(1):91-103.
  • 8Adve,Raviraj S Tapan Kumar Sarkar.Compensation for the effects of mutual coupling on direct data domain adaptive algorithms.IEEE Trans,on Antennas and Propagation,2000,48(1):86-94.
  • 9Sarkar T K,Pereira O.Using the matrix pencil method to estimate the parameters of a sum of complex exponentials.IEEE Antennas and Propagation Magzine,1995,37(5):48-55.
  • 10Cadzow J A,Kim Y S,Shiue D C.General directionof-arrival estimation:a signal subspace approach.IEEE Trans.on AES,1989,25(1):31-46.

共引文献1

同被引文献62

  • 1黄磊,吴顺君,张林让.一种波达方向估计的快速算法[J].电波科学学报,2005,20(6):707-711. 被引量:6
  • 2齐崇英,陈志杰,张永顺,陈西宏.基于投影预变换的快速DOA估计算法[J].系统工程与电子技术,2006,28(4):525-528. 被引量:4
  • 3CHAN A Y J, LITVA J. MUSIC and maximum tech- niques on two-dimensional DOA estimation with uni- form circular array[J]. IEE Proceedings Radar, Sonar and Navigation, 1995, 142(3): 105-114.
  • 4KEDIA V S, CHANDNA B. A new algorithm for 2-D DOA estimation[J]. Signal Process, 1997, 60 (3) : 325-332.
  • 5TAYEM N, KWON H M. L-shape 2-dimensional ar- rival angle estimation with propagator method [J]. IEEE Trans. Antennas and Propagation, 2005, 53 (5) : 1622-1630.
  • 6KIKUCHI S, TSUJI H, SANO A. Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix[J]. IEEE Antennas Wireless Propag. Iett. , 2006, 5(1): 35-40.
  • 7LI Ming, GAN Lu, WEI Ping. Improvement of 2-D direction finding algorithm based on two L-shape ar- rays[C]// International Conference on Signal Process- ing, (ICSP2O08), 2008, 1: 366-369.
  • 8GALY J. Antenne Adaptative.. Au second ordre aux orders sup6rieurs, applications aux signaux de tele- communications[D]. France.. University Paul Sabatier Toulouse, 1998.
  • 9ZOUBIR A, CHARGE P, WANG Y. Non circular sources localization with ESPRIT[C]//Proe. Europe- an Conference on Wireless Technology. Munich, Ger- many, 2003.
  • 10HUANG Lei, WU Shunjun, FENG Dazhang, et al. Low Complexity method for signal subspace fitting [J]. IEE Electronics Letters, 2004, 40 (14) : 847- 848.

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部