期刊文献+

基于心理学模型的协同过滤推荐方法 被引量:2

Collaborative Filtering Recommendation Method Based on Psychology Model
下载PDF
导出
摘要 提出一种改进协同过滤推荐的方法。该方法根据心理学中的态度行为关系理论建立用户浏览购买模型,通过分析用户浏览信息,预测用户对项的评分,根据预测的评分,运用协同过滤推荐算法为用户做出推荐。实验验证了用户浏览购买模型的有效性。与传统协同过滤方法进行对比的结果表明,该方法可以有效地改进协同过滤算法的推荐结果。 This paper proposes a new approach to improve collaborative filtering recommendation.It applies the attitude-behavior relationship theory in psychology to predict the users’ rating using the Web usage data and adopts the predicted rating in collaborative filtering algorithm to generate recommendations for users.It verifies the prediction model,and compares the method to traditional collaborative filtering algorithm which only records the users’ clicks as their interests.Experimental results demonstrate that the method is more effective at recommending items for users than the traditional algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第20期206-208,216,共4页 Computer Engineering
基金 国家"973"计划基金资助项目(2007CB310803)
关键词 协同过滤 推荐系统 态度行为关系 collaborative filtering recommendation system attitude-behavior relationship
  • 相关文献

参考文献6

  • 1曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 2徐翔,王煦法.协同过滤算法中的相似度优化方法[J].计算机工程,2010,36(6):52-54. 被引量:37
  • 3Claypool M,Le P,Waseda M,et al.Implicit Interest Indicators[C] //Proc.of ACM Intelligent User Interfaces Conference.New York,USA:ACM Press,2001.
  • 4余小高,余小鹏.基于隐式评分的推荐系统研究[J].计算机应用,2009,29(6):1585-1589. 被引量:8
  • 5Shen Lei,Zhou Yiming,Xu Chao,et al,Predicting User Behavior in E-commerce Based on Psychology Model[C] //Proc.of the 6thInternational Conference on Fuzzy Systems and Knowledge Discovery.Washington D.C.,USA:IEEE Computer Society,2009.
  • 6Glasman L R,Albarracin D.Forming Attitudes That Predict Future Behavior:A Mete-analysis of the Attitude-behavior Relation[J].Psychological Bulletin,2006,132(5):778-822.

二级参考文献55

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 3KWAK M, CHO D S. Collaborative filtering with automatic rating for recommendation[ C]//Proceedings of ISIE 2001. New York: Industrial Electronics, 2001 : 625 - 628.
  • 4YANO E, SUEYOSHI E, SHINOHARA I, et al. Development of a recommendation system with multiple subjective evaluation process models[ C]// Proceedings of the 2003 International Conference on CyberWorlds. Washington, DC: IEEEComputer Society, 2003:344 -351.
  • 5YU XIAO-GAO, JIAN YIN. A new clustering algorithm based on KNN and DENCLUE[ C]//Proceedings of ICMLC. Washington, DC: IEEE Press, 2005:2033 -2038.
  • 6NICHOLS D M. Implicit rating and filtering [ EB/OL]. [2008 -10 - 10 ]. http://www. ercim. org/publication/ws-proceedings/DE- LOS5/nichols. pdf.
  • 7SRINIVASA N, MEDASANI S. Active fuzzy clustering for collaborative filtering[ C] // Proceedings of 2004 IEEE International Conference on Fuzzy Systems. Washington, DC: IEEE Press, 2004:1697 - 1702.
  • 8LEE W P. Towards Agent-based decision making in the electronic marketplace: Interactive recommendation and automated negotiation [J]. Expert Systems with Applications, 2004, 27(4): 665-679.
  • 9YU XIAO - GAO , YU XIAO - PENG. A new k - nearest neighbor searching algorithm based on angular similarity[ C]//Proceedings of the 7th International Conference on Machine Learning and Cybernetics. Washington, DC: IEEE Press, 2008: 1779- 1784.
  • 10Sarwar B M, Karypis G, Konstan J A. Application of Dimensionality Reduction in Recommender System A Case Study[C]//Proc. of ACM WebKDD Workshop. [S.l.]: ACM Press, 2000.

共引文献435

同被引文献6

  • 1Sarwar B. Karypis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithms[C] //Proceedings of the 10th International Conference on World Wide Web. Hong Kong, China: [s. n.] , 2001.
  • 2Davidson J, Liebald B, Liu Lixin, et al. The YouTube Video Recommendation System[C] //Proceedings of the 4th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2010.
  • 3Spertus E, Sahami M, Buyukkokten O. Evaluating Similarity Measures: A Large-scale Study in the Orkut Social Network[C] // Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. Chicago, Illinois, USA: ACM Press, 2005.
  • 4南凯,董科军,谢建军,于建军.面向云服务的科研协同平台研究[J].华中科技大学学报(自然科学版),2010,38(S1):14-19. 被引量:37
  • 5陈肃,罗铁坚,许延祥.基于信任的推荐算法的鲁棒性分析(英文)[J].中国科学院研究生院学报,2011,28(2):253-261. 被引量:1
  • 6丁婉莹.基于用户标签的个人本体的构建模型研究[J].现代情报,2011,31(7):42-46. 被引量:6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部