期刊文献+

基于P300和机器学习的测谎方法研究 被引量:11

Lie Detection Method Based on P300 and Machine Learning
下载PDF
导出
摘要 为了克服传统测谎方法没有考虑到相同刺激下受试者思维状态变化的缺点,提出了基于P300和机器学习的测谎方法.该方法使用典型的3刺激测谎范式,首先记录30名随机划分的撒谎者和无辜者的12导脑电(EEG)信号,使用独立成分分析方法(ICA)分解由探针刺激产生的脑电信号,利用在Pz电极上分布强度大的独立分量重建Pz波形,将每名受试者的的若干个Pz波形进行平均,提取两步降噪后的每个Pz波形的时域和小波特征.最后,使用分类器区分P300和非P300波形,进一步计算出个体测谎诊断率.实验结果表明,支持向量机(SVM)适合于说谎意识状态的分类,提出的方法可以有效地改进单次刺激记录上的信噪比,提高P300成分的识别率,进而提高测谎诊断率. For solving the unvariability of subject cognitive states under the same kind of stimulus in the conventional machine learning methods,the method based on P300and machine learning was proposed.The standard three-stimuli protocol was chosen.Thirty guilty and innocent subjects were randomly divided into two groups and their EEG signals were first recoded.Independent component analysis(ICA)was carried out to decompose the datasets in the probe stimuli.The ICs with the largest projection strength at Pz were selected to reconstruct the Pz waveforms.Then small number of Pz waveforms within each subject is further averaged.Afterwards,the time-domain and wavelet features were extracted from each denoised Pz waveforms.In terms of the classifier to identify the P300and non-P300waveforms,the individual diagnostic rate was evaluated.The experimental results show that the SVM classifier is suitable to identify the sense states of lying,and the proposed method enables to improve the SNR in single trails,enhancing the accuracy of identifying the P300and of individual diagnostic rate.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第10期120-124,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(30870654)
关键词 测谎 独立成分分析 脑电 P300 两步降噪 支持向量机 lie detection independent component analysis electroencephalo graph P300 twostep denoising support vector machine
  • 相关文献

参考文献14

  • 1ABOOTALEBI V,MORADI M H,KHALILZADEH M A.A comparison of methods for ERP assessment in a P300-based GKT[J].International Journal of Psychophysiology,chophysiology,2006,62(2):309-320.
  • 2POLICH J.P300 in clinical applications:meaning.method,and measurement[J].American Journal of EEG Technology,1991,31(3):201-231.
  • 3ROSENFDELD J P,CANTWELL B,NASMAN V T,et al.A modified event-related potential-based guilty knowledge test[J].International Journal of Neuroscience,1988,42(1/2):157-161.
  • 4FARWELL L A,DoNCHIN E.The truth will out:interrogative polygraphy("lie detection")with event-related potentials[J].Psychophysiology,1991,28(5):531-547.
  • 5ABOOTALEBI V,MORADI M H,KHALILZADEH M A.A new approach for EEG feature extraction in P300-based lie detection[J].Computer Methods and Programs in Biomedicine,2009,94(1):48-57.
  • 6ROSCHKE J,MANN K,WAGNER P,et al.An approach to single trial analysis of event-related potentials based on signal detection theory[J].International Journal of Psychophysiology,1996,22(3):155-162.
  • 7JUNG T P,MAKEIG S,HUMPHRIES C,et al.Removing electroencephalographic artifacts by blind source separation[J].Psychophysiology,2000,37(2):163-178.
  • 8LIN C T,CHUNG I F,KO L W,et al.EEG-based assessment of driver cognitive responses in a dynamic virtual-reality driving environment[J].IEEE Transactions on Biomedical Engineering,2007,54(7):1349-1352.
  • 9HERRMANN C S,KNIGHT R T.Mechanisms of human attention:event related potentials and oscillations[J].Neuroscience and Biobehavioral Reviews,2001,25(6):165-476.
  • 10HSU W Y,LIN C C,JU M S,et al.Wavelet-based fractal features with active segment selection,application to single-trial EEG data[J].Journal of Neuro-science Methods,2007,163(1):145-160.

二级参考文献4

共引文献17

同被引文献95

  • 1薛建中,闫相国,郑崇勋.用核学习算法的意识任务特征提取与分类[J].电子学报,2004,32(10):1749-1753. 被引量:10
  • 2秦总根,任克勤.新型毒品的种类及其对人体的危害[J].辽宁警专学报,2006,8(6):38-41. 被引量:6
  • 3钟静.罪犯难过测谎关[J].民主与法制,2002,(5).
  • 4裴苍龄 魏虹.测谎的科学性到底有多少[M].光明日报,2002—03—22(81).
  • 5G Ben - Shakhar. “A critical review of the Control QuestionsTest (CQT),,— Handbook of polygraph testing, 2002 —openu. ac. il.
  • 6Elaad E. G Ben—Shakhar. Finger pulse waveform length inthe detection of concealed information. International Journal ofPsychophysiology,2006 ; 6 ( 1 ) :226—234.
  • 7Gamer M, Rill HG, Vossel G, et al. Psychophysio—logicaland vocal measures in the detection of guilty knowledge,In-ternational Journal of Psyehophysiology,2006 ;60 :76 - 87.
  • 8Rosenfeld JP, Biroschak JR, Furedy JJ. P300 based detectioncealed autobiographical verses incidentally acquired informa-tion in target and non - target paradigms. International Journalof Psychopysiology,2006 ;60(3) :251 -259.
  • 9ABOOTALEBI V,MORADI MH,Khalilzadehm A. A compar-ison of methods for ERP assessment in a P300 - based GKT.International Journal of Psychophysiology, 2006; 62(2) :309-320.
  • 10Shen T, Hong L,i Jerwen J, et al. An event - related poten-tial study of deception to self preferences. Brain Research,1247;(2009) : 142 - 148.

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部