期刊文献+

基于DE—BP算法的空调负荷预测研究 被引量:1

Air conditioning load prediction based on DE—BP algorithm
下载PDF
导出
摘要 建立了基于BP神经网络理论的空调系统负荷预测模型。针对BP神经网络参数优化过程中容易陷入局部最优的缺陷,采用差异演化算法(differential evolution algorithm,DE)对其进行优化,以提高预测精度。结合具体实例进行空调冷负荷预测,并与采用遗传算法、蚁群算法、粒子群算法对BP神经网络进行参数优化的仿真实验结果对比表明,由DE—BP算法所具有较好的预测性能。 Based on BP neural network theory,the model to predict air conditioning load was established. In order to optimize the behavior of BP neural network,DE algorithm was introduced into classic BP neural network. Using this algorithm to predict a real example and compare with BP model optimization method based on GA( Genetic Algorithm) ,ACO( Ant Colony Optimization) and POS ( Partial Swarm Optimization) demonstrate an improvement of generalization performance.
出处 《四川建筑科学研究》 北大核心 2010年第5期268-270,共3页 Sichuan Building Science
关键词 BP神经网络 差异演化 空调负荷 预测 BP neural network DE air conditioning load prediction
  • 相关文献

参考文献8

  • 1何大四,张旭,刘加平.常用空调负荷预测方法分析比较[J].西安建筑科技大学学报(自然科学版),2006,38(1):125-129. 被引量:35
  • 2He Da-si,Zhang Xu.Analysis of air conditioning load prediction by modified seasonal exponential smoothing model[J].Journal of Tongji University Natural Science,2005,33(12):1672-1676.
  • 3姚晔,连之伟,侯志坚,周湘江.基于AHP的空调负荷组合预测研究[J].哈尔滨工业大学学报,2004,36(9):1269-1271. 被引量:11
  • 4Fortuna L,Grazianis.Soft sensors for product quality monitoring in debutanizer distillation columns[J].Control Engineering Practice,2005,13(8):499-508.
  • 5Kenneth P,Rainer M,Jouni A L.Differential evolution:A practical approach to global optimization (Natural Computing Series)[M].Springer,2006.
  • 6Chappelle O,Vapnik V,Bousquet O.Choosing multiple parameters for support vector machines[J].Machine learing,2002,46(1):131-160.
  • 7Cruz L,Van W.Efficient differential evolution algorithm for multimodal optimal control problem[J].Application soft computing,2003,3(2):97-122.
  • 8Abbasss H.Self-adaptive pare to differential evolution[C] //Proceedings of the IEEE 2002 congress on evolutionary computation,2002.

二级参考文献19

  • 1[5]Minoru Kawashima, Charles E. Dorgan, et al. Optimizing system control with load prediction by neural networks for an ice - storage system [ J ]. ASHRAE transactions,1996,102 ( 1 ): 1169 - 1178.
  • 2[6]Minoru Kawashima. Artificial neural network backpropagation model with three - phase annealing developed for the building energy predictor shoot - out [ J ]. ASHRAE Transactions, 1994,100(2): 1096 - 1118.
  • 3[7]Minoru Kawashima, Charies E. Dorgan, etc. Hourly thermal load prediction for the next 24 hours by ARIMA, EWMA L. R, and an artificial neural network [ J ].ASHRAE Transactions, 1995,101 ( 1 ): 186 - 200.
  • 4[12]BATES J M, GRANGER C. The Combination of Forecast. Operation Research Quarterly, 1969 ( 20 ): 451 -468.
  • 5[13]GUPIA S, WILTON P. Combination of Forecasts: An Extension [ J ]. Management Science, 1987 ( 33 ): 372 -384.
  • 6FORREST J R,WEPFER W J. Formulation of a load prediction algorithm for a large commercial building[J].Ashrae Transactions,1984,90(2 ) : 523-535.
  • 7SEEM J E,BRAUN J E. Adaptive Methods for Real-time Forecasting of Building Electrical Demand [J]. Ashrae Transactions, 1991,97 (1) : 710-721.
  • 8KREIDER J F,WANG X A. Artificial neural networks demonstration for automated generation of energy use predictors for commercial buildings[J]. Ashrae Transactions, 1991,97(2) ;775-779.
  • 9FERRANO F J. Prediction of the Thermal Storage Loads Using Neural Networks[J]. ASHRAE Trans, 1992,96(1):825-829.
  • 10汪训昌.结合国情,稳步建设蓄冷空调工程——关于现阶段在我国发展蓄冷空调的几个认识与策略问题的探讨[J].暖通空调,1997,27(5):16-21. 被引量:13

共引文献41

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部