期刊文献+

基于动态逻辑的MPRM电路低功耗优化设计 被引量:3

Low power optimization for MPRM circuits based on dynamic logic
下载PDF
导出
摘要 n个输入变量的逻辑函数有3n种不同的MPRM(Mixed-Polarity Reed-Muller)表达式,其对应电路的功耗和面积不尽相同。本文通过对CMOS电路功耗和动态逻辑MPRM电路低功耗分解方法的分析,建立MPRM电路功耗和面积估计模型,而后提出一种基于动态逻辑的MPRM电路快速低功耗分解算法。在此基础上,针对中小规模和大规模MPRM电路,结合列表转换技术,分别将穷尽搜索算法和遗传算法应用于基于动态逻辑的MPRM电路低功耗优化设计中。通过对MCNC和ISCAS基准电路测试表明:与Boolean电路和FPRM(Fixed-Polarity Reed-Muller)电路相比,中小规模MPRM电路的功耗平均节省80.65%和50.98%,大规模MRPM电路的功耗平均节省69.17%和46.61%。 For an n-veriable logic function, power and area of 3n Mixed-Polarity Reed-Muller (MPRM) circuit implementations are different. Power and area estimation model of MPRM circuits are established by analyze of power consumptions of CMOS circuits and low power decompositions for MPRM circuits in dynamic logic. Then a fast algorithm of low power decomposition of dynamic logic-base MPRM circuits is proposed. Based on estimation models and decomposition algorithm, and combining tabular conversion techniques, exhaustive search algorithm is applied in low power optimization for mid-small scale MPRM circuits and genetic algorithm for large scale accordingly. Through several MCNC and ISCAS Benchmark tests, the results show that compared to Boolean circuits and Fixed-Polarity Reed-Muller (FPRM) circuits, mid-small scale MPRM circuits have achieved save power and area up to 80.65% and 50.98% on average, large scale MPRM circuits up to 80.65% and 50.98% on average, respectively.
作者 李辉 汪鹏君
出处 《电路与系统学报》 CSCD 北大核心 2010年第5期99-105,89,共8页 Journal of Circuits and Systems
基金 国家自然科学基金(61076032 60776022 60676020) 中国博士后科学基金(20090461355) 浙江省博士后科研项目 浙江省大学生科技创新活动计划(新苗人才计划)项目
关键词 MPRM电路 动态逻辑 低功耗 优化设计 MPRM circuits dynamic logic low power optimization
  • 相关文献

参考文献12

  • 1K Roy, S C Prasad. Low-Power CMOS VLSI Circuit Design [M]. Canada: simultaneously, 2000.
  • 2H Zhou, D F Wong. Optimal low power XOR gate decomposition [A]. in: Design Automation Conference [C]. Los Angeles: 2000. 104-107.
  • 3S N Pradhan, S. Chattopadhyay. Two-level AND-XOR Network Synthesis with Area-Power Trade-off [J]. International Journal of Computer Science and Network Security, 2008, 8(9): 368-375.
  • 4汪鹏君,陆金刚,陈恳,徐建.Low Power Polarity Conversion Based on the Whole Annealing Genetic Algorithm[J].Journal of Semiconductors,2008,29(2):298-303. 被引量:4
  • 5S Kang, Y Leblebici. CMOS Digital Integrated Circuits: Analysis and Design [M]. New York: McGraw-Hill Science, 2002.
  • 6B A AI Jassani, N Urquhart, A E A Almaini. Manipulation and optimisation techniques for Boolean logic [J]. Computers and Digital Techniques, 2010, 4(3): 227-239.
  • 7H Li, P Wang, J Dai. Area Minimization of MPRM Circuits [A]. in: IEEE 8th International Conference on ASIC [C]. Changsha, 2009. 521-524.
  • 8C Y Tsui, M Pendram, A M Despain. Technology decomposition and mapping targeting low power dissipation [A]. in: Design Automation Conference [C]. Dallas, 1993.68-73.
  • 9J Cheng, X Chen, K M Faraj, et al. Expansion of logical function in the OR-coincidence system and the transform between it and maxterm expansion [J]. Computers and Digital Techniques, 2003, 150(6): 397-402.
  • 10A E A Aimaini, L McKenzie. Tabular techniques for generating Kronecker expansions [J]. Computers and Digital Techniques, 1996, 143(4): 205-212.

二级参考文献5

共引文献3

同被引文献27

  • 1T Hirayama: Y Nishitani. Exact minimization of AND-EXOR expressions of practical benchmark functions [J]. Journal of Circuits, Systemsand Computers, 2009, 18(3): 465-486.
  • 2H Rahaman, D K Das, B B Bhattacharya. Testable design of AND-EXOR logic networks with universal test sets [J]. Computers and Electrical Engineering, 2009, 35(5): 644-658.
  • 3M Yang, L Wang, J R Tong, et al. Techniques for dual forms of Reed-Muller expansion conversion [J]. Integration, the VLSI Journal, 2008, 41(1): 113-122.
  • 4T K Shahana, R K ames, K P Jacob, et al. Automated synthesis of delay-reduced Reed-muller universal logic module networks [A]. in: Proceedings of 23rd NORCHIP Conference [C]. Oulu, 2005~ 1-4.
  • 5F Mauge(, C Chandre, T Uzer. Simulated annealing algorithm for finding periodic orbits of multi-electron atomic systems [J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(7): 2845-2852.
  • 6C J Liao, C T Tseng, P Luarn. A discrete version of particle swarm optimization for flowshop scheduling problems [J]. Computers and Operations Research, 2007, 34(I 0): 3099-3111.
  • 7W N Chen, J Zhang, H S H Chung, et al. A novel set-based particle swarm optimization method for discrete optimization problems [J]. IEEE Transactions on Evolutionary Computation, 2010, 14(2): 278-300.
  • 8B A AI Jassani, N Urquhart, A E A. Almaini. Manipulation and optimisation techniques for Boolean logic [J]. IET Computers and Digital Techniques, 2010, 4(3): 227-239.
  • 9J Cortadella. Timing-driven logic bi-decomposition [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(6): 675-685.
  • 10Liu Y,Shelar R S,Hu J. Simultaneous Technology Mapping and Placement for Delay Minimization[J].IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,2011,(03):416-426.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部