期刊文献+

氢还原制备树枝状Fe_3O_4和α-Fe及其静磁性能研究

Hydrogen Reducing Synthesis and Magnetic Properties of Dendritic Fe_3O_4 and α-Fe
下载PDF
导出
摘要 以树枝状α-Fe2O3为前驱物,通过氢还原制备得到Fe3O4和α-Fe树枝状结构,系统研究热处理还原条件对产物形貌和成分的影响。结果表明:随着还原温度和还原时间的增加,树枝状α-Fe2O3前驱物逐渐被还原为α-Fe,还原产物的树枝状形貌保持程度依次降低。还原是一个缓慢且分级进行的过程,因此通过控制还原反应的温度和时间,可以得到形貌良好的树枝状Fe3O4和α-Fe。而当还原温度和时间增加时,产物会发生晶粒生长以及重结晶过程,从而导致树枝状形貌被破坏程度逐渐增加,精细结构逐渐消失。对其进行静磁性能表征发现:由于具有大的形貌各向异性,Fe3O4和α-Fe树枝状结构在室温下具有大的矫顽力和剩余磁化强度。 The dendritic Fe304 and α-Fe were synthesized by a high temperature hydrogen reduction, using the dendritic α-Fe as starting materials. The influences of reduction conditions on the final products were studied systematically. It was found that the dendritic α-Fe2O3 was reduced to dendritic Fe3O4 and α-Fe gradually, and the dendritic morphology of the finally obtained products was destroyed gradually. Because the reduction was a slow and multi-step process, the Fe304 and ct- Fe which maintained the dendritic morphologies could be obtained through controlling the reduction temperature and time. However, when the reduction time prolonged, since there were crystal growth and recrystallization in the reduction process, the fine structure disappeared and the dendritic morphology was damaged gradually. Because of the large effective anisotropy constant derived from the peculiar morphology the dendritic structure, the as-obtained dendritic Fe304 and α-Fe exhibited enhanced coercivity and remanent magnetizations at room temperature.
出处 《中国粉体技术》 CAS 北大核心 2010年第5期1-4,共4页 China Powder Science and Technology
基金 国家高技术研究发展计划(863计划)项目 编号:2006AA032461 霍英东青年教师基金项目 编号:101049
关键词 树枝状结构 还原 静磁性能 dendritic structure reduction magnetic property
  • 相关文献

参考文献23

  • 1ZENG H C. Synthetic architecture of interior space for inorganic nanostructures[J]. J Mater. Chem, 2006, 16:649-662.
  • 2CAO M H, LU T F, GAO S, et al. Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties[J]. Angew Chem Int Ed, 2005,44 : 4 197-4 201.
  • 3LIU X H, YI R, WANG Y T, et al. Highly ordered snowfiakelike metallic cobalt microcrystals[J]. J Phys Chem C, 2007, 111 : 163-167.
  • 4LIU X M, FU S Y. High-yield synthesis of dendritic Ni nanostructures by hydrothermal reduction[J]. J Cryst. Growth, 2007, 306 : 428-432.
  • 5ZHOU X M, WEI X W. Single crystalline FeNi3 dendrites: large scale synthesis, formation mechanism, and magnetic properties [J]. Cryst Growth Des, 2009, 9:7-12.
  • 6KUANG D B, XU A W, FANG Y P, et al. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process[J]. Adv Mater, 2003, 15:1 747-1 750.
  • 7SUN X P, HAGNER M. Novel preparation of snowflake-like dendritic nanostructures of Ag or Au at room temperature via a wet-chemical route[J]. Langmuir, 2007, 23:9 147-9 150.
  • 8XIAO J P, XIE Y, TANG R, et al. Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures[J]. AdvMater, 2001, 13:1 887-1 891.
  • 9LU L H, KOBAYASHI A, KIKKAWA Y, et al. Oriented attachment- based assembly of dendritic silver nanostruetures at room temperature[J].J Phys Chem B, 2006, 110: 23 234-23 241.
  • 10OHNISHI M, KOZUKA Y, YE Q L, et al. Phase selective preparations and surface modifications of spherical hollow nanomagnets [J]. J Mater Chem, 2006, 16:3 215-3 220.

二级参考文献45

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部