期刊文献+

一类带位势非线性热方程解的不存在性定理

A nonexistence theorem to the nonlinear heat equations with potentials
下载PDF
导出
摘要 研究与向量场有关的非线性次椭圆热方程.通过选取合适的测试函数,应用反证法证明了与之相关的初边值问题解的不存在性定理,将欧式空间及Heisenberg群上的结果推广至满足Hrmander有限秩条件的光滑向量场. In this paper we consider the nonlinear subelliptic heat equations related to a system of vector fields. By choosing proper test functions and using contradiction arguments, a nonexistence theorem to the corresponding initial-boundary value problem is proved, thus the known results in Euclidean space are extended to the smooth vector fields satisfying HSrmander's finite rank condition.
作者 刘海峰
出处 《纯粹数学与应用数学》 CSCD 2010年第5期761-767,共7页 Pure and Applied Mathematics
基金 上海高校选拔培养优秀青年教师科研专项基金(B-8101-09-0249)
关键词 次椭圆算子 非线性热方程 初边值问题 不存在性定理 subelliptic operator, nonlinear heat equation, initial-value problem, nonexistence theorem
  • 相关文献

参考文献20

  • 1Hormander L.Hypoelliptic second order differential equations[J].Acta Math.,1967(1190):147-171.
  • 2Nagel A,Stein E M,Waigner S.Balls and metrics defined by vector fields Ⅰ:Basic properties[J].Acta Math.,1985,155:103-147.
  • 3Capogna L,Danielli D,Garofalo N.An embedding theorem and the Harnack inequality for nonlinear subelliptic equations[J].Commun.in Partial Diff.Equations,1993,18:1765-1794.
  • 4Bony J M.Principe du maximum,inégalité de Harnack et unicité du probléme de Cauchy pour les operateura elliptique dégénérés[J].Ann.Inst.Fourier,Grenoble,1969,19(1):277-304.
  • 5Fefferman C,Phong D H.Subelliptic Eigenvalue Problems[M].Beltmont:Wadsworth,1981.
  • 6Jerison D S.The Poincaré inequality for vector fields satisfying H(o)mander's condition[J].Duke Math.Journal,1986,53:503-523.
  • 7Rothschild L P,Stein E M.Hypoelliptic differential operators and nilpotent groups[J].Acta Math.,1984,137:143-160.
  • 8Sanchex Calle A.Fundamental solutions and geometry of sum of squares of vector fields[J].Inv.Math.,1984,78:143-160.
  • 9Jerison D S,Lee J M.Intrinsic CR coordinates and the CR Yamabe prolblem[J].J.Diff.Geom.,1989,29:303-343.
  • 10Jerison D S,Lee J M.Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem[J].J.Amer.Math.Soc.,1998,1:1-13.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部