摘要
研究与向量场有关的非线性次椭圆热方程.通过选取合适的测试函数,应用反证法证明了与之相关的初边值问题解的不存在性定理,将欧式空间及Heisenberg群上的结果推广至满足Hrmander有限秩条件的光滑向量场.
In this paper we consider the nonlinear subelliptic heat equations related to a system of vector fields. By choosing proper test functions and using contradiction arguments, a nonexistence theorem to the corresponding initial-boundary value problem is proved, thus the known results in Euclidean space are extended to the smooth vector fields satisfying HSrmander's finite rank condition.
出处
《纯粹数学与应用数学》
CSCD
2010年第5期761-767,共7页
Pure and Applied Mathematics
基金
上海高校选拔培养优秀青年教师科研专项基金(B-8101-09-0249)
关键词
次椭圆算子
非线性热方程
初边值问题
不存在性定理
subelliptic operator, nonlinear heat equation, initial-value problem, nonexistence theorem