摘要
研究二阶算子矩阵代数中的全可导点.利用线性映射与算子矩阵代数运算,以及套代数理论的相关结果,给出并证明了第二行第二列元素为可逆算子,其余元素为零算子的二阶矩阵是二阶算子矩阵代数的关于强算子拓扑的全可导点,推广了相关文献中的结果.
It is the purpose studying all-derivable point in 2 × 2 operator matrix algebra. Using the operation of linear mapping and matrix algebra, and the related results of nest algebra theory, it is shown in this paper that the matrix (the element of the second row second column is an invertible operator, and the other elements are zero operators) is an all-derivable point of the algebra of all 2 × 2 operator matrices for the strongly operator topology, the result of related articles is generalized,
出处
《纯粹数学与应用数学》
CSCD
2010年第5期785-791,共7页
Pure and Applied Mathematics
关键词
全可导点
二阶算子矩阵
可导线性映射
套代数
all-derivable point, 2 × 2 operator matrices, derivable linear mapping, nest algebra